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Abstract 

This study addresses the solvability and explicit solutions of various 
boundary value problems (BVPs) for inhomogeneous equations within the 
upper half unit disc. Specifically, we investigate the Dirichlet, Neumann, 
and mixed Dirichlet-Neumann problems for the inhomogeneous Cauchy-
Riemann and Bitsadze equations. By employing analytical techniques and 
function space theory, we establish necessary and sufficient conditions for 
the existence of solutions. Furthermore, explicit solution formulas are 
derived under these solvability criteria, providing a constructive approach 
to solving such BVPs. The significance of this research lies in its 
contribution to the broader theory of BVPs in complex domains. The 
results obtained not only extend classical boundary conditions but also 
offer a systematic framework for dealing with higher-order equations. The 
interplay between different boundary conditions is explored in detail, 
revealing new insights into the structure of solutions and their dependence 
on boundary data. Beyond the theoretical implications, our findings have 
potential applications in mathematical physics, fluid dynamics, and 
engineering, where such problems frequently arise in modeling physical 
phenomena. Future research may further extend these results to more 
general domains and nonlinear equations, enriching the field of complex 
analysis and partial differential equations.  

 

1. Introduction  

Boundary value problems (BVPs) play a significant role in mathematical analysis, particularly 
in the study of partial differential equations in complex domains. These problems frequently 
appear in diverse scientific and engineering fields, including fluid dynamics, 
electromagnetism, elasticity, and heat conduction. Among them, the Dirichlet and Neumann 
problems are of fundamental importance due to their wide range of applications and 
theoretical implications. Analyzing these problems in specific geometric domains, such as the 
upper half unit disc, provides valuable insights into solution behavior and the impact of 
boundary conditions. 

One of the essential classes of PDEs studied in complex analysis involves the Cauchy-Riemann 
and Bitsadze equations. The solvability and explicit solutions of these equations under various 
boundary conditions have been extensively explored. Many researchers have contributed to 
the field by investigating different types of boundary conditions and their implications for 
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PDEs. For instance, Darya and Tagizadeh (2024) analyzed the Dirichlet problem for the 
Cauchy-Riemann equations in the half-disc, while Chaudhary and Kumar (2009) examined 
BVPs in the upper half-plane. Additionally, Kumar and Prakash (2006) addressed mixed BVPs 
for inhomogeneous polyanalytic equations, highlighting the complexity introduced by such 
conditions. 

In this study, we focus on the solvability conditions and explicit solutions of the Dirichlet, 
Neumann, and mixed Dirichlet-Neumann BVPs in the upper half unit disc. We employ 
analytical techniques, integral representations, and function space methods to derive 
necessary and sufficient conditions for the existence of solutions. This work builds upon and 
extends previous studies, incorporating a broader class of boundary conditions and 
addressing more generalized settings. 

A central challenge in this study is the mixed Dirichlet-Neumann problem, which imposes 
different boundary conditions on different parts of the boundary. Understanding these types 
of problems is crucial for applications such as heat transfer, fluid-structure interactions, and 
stress analysis in elasticity. Previous works, including those of Karaca (2021, 2024a, 2024b) 
have demonstrated the significance of studying Schwarz-type, combined BVPs in complex 
domains, and explored Schwarz-type and combined BVPs, extending classical results in 
complex analysis. Our research further explores these topics by formulating and solving 
analogous problems in the upper half unit disc. Kalmenov et al. (2008) provided Green 
function representations for the Dirichlet problem of the polyharmonic equation in a sphere, 
contributing to the broader understanding of BVPs. 

A major challenge in this research is the mixed Dirichlet-Neumann problem, which imposes 
different boundary conditions on different segments of the boundary. Understanding such 
problems is crucial for applications in heat transfer, fluid-structure interactions, and elasticity. 
Previous studies, including those of Begehr et al. (2008), Wang and Du (2004), Begehr and 
Vaitekhovich (2008 and 2012), Begehr et al. (2017) and Karachik (2013 and 2019) have 
highlighted the significance of Dirichlet and combined BVPs in complex domains. Our 
research expands upon these topics by formulating and solving analogous problems in the 
upper half unit disc. 

To develop the theoretical foundation for our results, we first introduce key mathematical 
tools, including the complex forms of the Gauss divergence theorem and the Cauchy-Pompeiu 
representation formula. These fundamental results provide the basis for establishing the 
solvability conditions for the Dirichlet and Neumann problems. 

This paper is organized as follows: In Section 1, we provide the necessary theoretical 
background, including the formulation of the inhomogeneous Cauchy-Riemann and Bitsadze 
equations. Section 2 is devoted to the Dirichlet and Neumann problems, where we establish 
the solvability criteria and construct explicit solutions. Finally, Section 3 presents concluding 
remarks and potential directions for future research, including extensions to higher-order 
equations and applications in applied mathematics and engineering. 

By systematically analyzing these BVPs, we aim to contribute to the broader understanding of 
PDEs in complex domains and provide a solid foundation for further investigations into 
related mathematical models. 

A complex-valued function 𝜔 = 𝑢 + 𝑖𝑣 given by two real-valued functions 𝑢 and 𝑣 of the real 
variables 𝑥 and 𝑦 will be denoted by 𝜔(𝑧) although being rather a function of 𝑧 and 𝑧̅. In case 
when 𝜔 is independent of 𝑧̅ in an open set of the complex plane ℂ it is an analytic function. It 
then satisfies the Cauchy-Riemann system of first order partial differential equations 

 𝑢𝑥 = 𝑣𝑦, 𝑢𝑦 = −𝑣𝑥.  
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This is equivalent to 

 ωz̅ = 0  

as follows from 

 2𝜕�̅� 𝜔 = (𝜕𝑥 + 𝑖𝜕𝑦)( 𝑢 + 𝑖𝑣) = 𝜕𝑥𝑢 − 𝜕𝑦𝑣 + 𝑖(𝜕𝑥𝑣 + 𝜕𝑦𝑢).  

Using these complex derivatives, the classical Gauss divergence theorem can be rewritten in a 
complex form for functions that are continuously differentiable in a bounded domain 𝐷 with 
a smooth boundary 𝜕𝐷. The key results that follow from this representation include the Gauss 
theorem (G.T.) and the Cauchy-Pompeiu representation (C.-P. r.), which are fundamental in 
deriving the solvability conditions for our BVPs. 

Gauss Theorem (Complex Form) (G.T.) Let 𝐷 ⊂  ℂ    be a regular domain (i.e. a bounded 
domain with smooth boundary) and let  𝜔 ∈  𝐶1(𝐷;  ℂ) ∩ C( 𝐷 ̅; ℂ). Then 

 ∫ ωz̅

𝐷

(𝑧)𝑑𝑥𝑑𝑦 =
1

2𝑖
∫ ω

𝐷

(𝑧) 𝑑𝑧  

and 

 ∫ ωz

𝐷

(𝑧)𝑑𝑥𝑑𝑦 = −
1

2𝑖
∫ ω

𝐷

(𝑧) 𝑑𝑧̅  

for 𝑧 = 𝑥 + 𝑖𝑦. 

Cauchy–Pompeiu representation (C.–P. r.) Let 𝐷 and ω be as above. Then 

 ω(z) =
1

2𝜋𝑖
 ∫

ω(𝜍)

ς − z
𝜕𝐷

 𝑑𝜍   ̶  
1

𝜋
∫

ω�̅�(𝜍)

ς − z
𝐷

𝑑𝜉𝑑ή  

and 

 ω(z) = −
1

2𝜋𝑖
 ∫

ω(𝜍)

ς − z̅̅ ̅̅ ̅̅
𝜕𝐷

 𝑑𝜍 ̅   ̶  
1

𝜋
∫

ω𝜍(𝜍)

ς − z̅̅ ̅̅ ̅̅
𝐷

𝑑𝜉𝑑ή  

for 𝜍 = 𝜉 + 𝑖ή and 𝑧 ∈ 𝐷. 

These results serve as the foundation for establishing the existence and uniqueness of solutions 
to the Dirichlet and Neumann problems. 

The following theorem presents the necessary and sufficient conditions for the solvability of 
the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the upper half unit 
disc. 

Theorem 1. (Darya and Tagizadeh, 2024) The Dirichlet boundary value problem for the 
inhomogeneous Cauchy-Riemann equation 

ωz̅ = 𝑔(𝑧) in 𝔻+, ω = ϒ0 on ∂𝔻+ g ∈ Lp(𝔻+; ℂ), p > 2,  ϒ0 ∈ L2(ℝ, ℂ) ∩ 𝐶(∂𝔻+, ℂ)              

is solvable if and only if  for 𝑧 ∈ 𝔻+, 

 
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − 𝑧̅
+

𝑧̅

ς𝑧̅ − 1
] 𝑑𝜍   ̶  

1

𝜋
∫ 𝑔(𝜍) [

1

ς − 𝑧̅
+

𝑧̅

ς𝑧̅ − 1
]

𝔻+

𝑑𝜉𝑑ή = 0 (1) 
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and its solution can be uniquely expressed as 

 𝜔(𝑧) =  
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − z
+

z

ςz − 1
] 𝑑𝜍   ̶ 

1

𝜋
∫ 𝑔(𝜍) [

1

ς − z
+

z

ςz − 1
]

𝔻+

𝑑𝜉𝑑ή, (2) 

where  ς = 𝜉 + 𝑖ή. 

The following theorem presents the necessary and sufficient conditions for the solvability of 
the Neumann problem for the inhomogeneous Cauchy-Riemann equation in the upper half 
unit disc. 

Theorem 2. (Karaca, 2024b) The Neumann problem for the inhomogeneous Cauchy- Riemann 
equation in the upper half unit disc 

𝜔�̅� =g(z) in 𝔻+,  ∂ν𝜔 = ϒ on ∂𝔻+, 𝜔(0) = c 

for g ∈ Lp(𝔻+; ℂ), p > 2,  ϒ ∈ L2(ℝ, ℂ) ∩ 𝐶(∂𝔻+, ℂ), c ∈  ℂ   

is solvable if and only if for 𝑧 ∈ 𝔻+, 

 

1

2𝜋𝑖
∫ (ϒ(𝜍)   ̶  𝜍 𝑔(𝜍)) [

−1

ς − 𝑧̅
+

1

ς(1 − 𝜍𝑧̅)
] 𝑑𝜍

𝜕𝔻+

+
1

𝜋
∫ 𝑔(𝜍) [

𝑧̅

  (ς  ̶ 𝑧̅)2
+

𝑧̅

 (1 − 𝜍𝑧̅)2]

𝔻+

𝑑𝜉𝑑ή = 0. 
(3) 

The unique solution then is 

 

𝜔(𝑧) = 𝑐    ̶ 
1

2𝜋𝑖
∫ (ϒ(𝜍)   ̶  𝜍 𝑔(𝜍))

𝜕𝔻+

[𝑙𝑜𝑔 (
𝜍 − 𝑧

𝜍
)   ̶  𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍
   ̶  

1

𝜋
∫ 𝑔(𝜍) [

𝑧

𝜍(𝜍  ̶ 𝑧)
𝔻+

+
z

1  ̶ 𝜍𝑧
] 𝑑𝜉𝑑ή. 

(4) 

By the help of Theorem 2, we have the following theorem, which is a special form of Neumann 
problem. 

Theorem 3. (Karaca, 2024b) The problem 

𝜔�̅� =g(z) in 𝔻+,  𝑧 𝜔𝑧 = ϒ on ∂𝔻+,  𝜔(0) = c 

for g ∈ Lp(𝔻+; ℂ), p > 2,  ϒ ∈ L2(ℝ, ℂ) ∩ 𝐶(∂𝔻+, ℂ), c ∈  ℂ   

is solvable if and only if for 𝑧 ∈ 𝔻+, 

 
1

2𝜋𝑖
∫ ϒ(𝜍) [

−1

ς − 𝑧̅
+

1

ς(1 − 𝜍𝑧̅)
] 𝑑𝜍 +

1

𝜋
∫ 𝑔(𝜍) [

𝑧̅

  (ς  ̶ 𝑧̅)2
+

𝑧̅

 (1 − 𝜍𝑧̅)2]

𝔻+

𝑑𝜉𝑑ή = 0.

𝜕𝔻+

 (5) 

The unique solution then is 

 𝜔(𝑧) = 𝑐    ̶ 
1

2𝜋𝑖
∫ ϒ(𝜍)

𝜕𝔻+

[𝑙𝑜𝑔 (
𝜍 − 𝑧

𝜍
)   ̶  𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍
   ̶ 

1

𝜋
∫ 𝑔(𝜍) [

𝑧

𝜍(𝜍  ̶ 𝑧)
+

z

1  ̶ 𝜍𝑧
]

𝔻+

𝑑𝜉𝑑ή. (6) 

2. The Dirichlet-Neumann Problem  

In this section, we establish the theoretical foundation necessary for analyzing the BVPs 
presented in later sections. We begin by reviewing the inhomogeneous Cauchy-Riemann and 
Bitsadze equations within the upper half unit disc, outlining their significance and 



 

63 

Karaca                                                                      Scientific Research Communications, 5(1) 2025 

mathematical properties. This groundwork is essential for formulating the solvability 
conditions and deriving explicit solutions. 

The subsequent results build upon previously known theorems, extending them to encompass 
more complex boundary conditions. By leveraging analytical techniques and employing 
function spaces suited to the problem's geometry, we derive conditions that guarantee the 
existence and uniqueness of solutions. 

Theorems 4 and 5, presented below, address the Dirichlet-Neumann problem and a more 
general boundary value problem for the inhomogeneous Bitsadze equation, respectively. 
These results highlight the interplay between boundary conditions and the inhomogeneous 
nature of the governing equations, providing a robust framework for further analysis. 

Theorem 4. The Dirichlet-Neumann problem for the inhomogeneous Bitsadze equation in the 
upper half unit disc 

𝜔�̅��̅� = g(z) in 𝔻+, ω = ϒ0,  ∂νωz̅ = ϒ1 on ∂𝔻+,  ωz̅(0) = c,   

for  g ∈ Lp(𝔻+; ℂ), p > 2,  ϒ0, ϒ1 ∈ L2(ℝ, ℂ) ∩ 𝐶(∂𝔻+, ℂ), c ∈  ℂ  is solvable if and only if for 𝑧 ∈

𝔻+  

 

𝑐 +
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

𝑧̅(ς − 𝑧̅)
+

1

ς𝑧̅ − 1
] 𝑑𝜍

+
1

2𝜋𝑖
∫ (ϒ1(𝜍)   ̶ 𝜍 𝑔(𝜍))

𝜕𝔻+

 
1 − |𝑧|2

|𝑧|2 [𝑙𝑜𝑔 (
𝜍 − 𝑧

𝜍
 )  ̶  𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍

+
1

𝜋
∫ 𝑔(𝜍)(|𝑧|2 − |𝑡|2) [

1

𝑧̅ς(z − ς)
+

1

𝑧̅(zς − 1)
]

𝔻+

𝑑𝜉𝑑ή = 0 

(7) 

and 

 

1

2𝜋𝑖
∫ (ϒ1(𝜍)  ̶ 𝜍 𝑔(𝜍)) [

−1

ς − 𝑧̅
+

1

ς(1 − 𝜍𝑧̅)
] 𝑑𝜍 +

1

𝜋
∫ 𝑔(𝜍) [

𝑧̅

  (ς    ̶ 𝑧̅)2
+

𝑧̅

 (1 − 𝜍𝑧̅)2]

𝔻+

𝑑𝜉𝑑ή

𝜕𝔻+

= 0. 

(8) 

The solution then is 

 

𝜔(𝑧) = 𝑐𝑧̅ +
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − z
+

z

ςz − 1
] 𝑑𝜍

+
1

2𝜋𝑖
∫ (ϒ1(𝜍)  ̶ 𝜍 𝑔(𝜍))

𝜕𝔻+

1 − |𝑧|2

𝑧
[𝑙𝑜𝑔 (

𝜍 − 𝑧

𝜍
)  ̶ 𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍

+
1

𝜋
∫ 𝑔(𝜍)(|𝜍|2   ̶  |𝑧|2) [

1

𝜍(𝜍   ̶  𝑧)
+

1

1  ̶ 𝜍𝑧
]

𝔻+

𝑑𝜉𝑑ή.  

(9) 

Proof.  The problem is equivalent to the system 

𝜔�̅� =u in 𝔻+ ,  ω = ϒ0 on ∂𝔻+, 

𝑢�̅� =g(z) in 𝔻+,  ∂νu = ϒ1 on ∂𝔻+, u(0) = c. 

The solvability conditions are 

 
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − 𝑧̅
+

𝑧̅

ς𝑧̅ − 1
] 𝑑𝜍   ̶  

1

𝜋
∫ 𝑢(𝜍) [

1

ς − 𝑧̅
+

𝑧̅

ς𝑧̅ − 1
]

𝔻+

𝑑𝜉𝑑ή = 0 (10) 

and 
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1

2𝜋𝑖
∫ (ϒ1(𝜍)   ̶  𝜍 𝑔(𝜍)) [

−1

ς − 𝑧̅
+

1

ς(1 − 𝜍𝑧̅)
] 𝑑𝜍 +

1

𝜋
∫ 𝑔(𝜍) [

𝑧̅

  (ς  ̶ 𝑧̅)2
+

𝑧̅

 (1 − 𝜍𝑧̅)2]

𝔻+

𝑑𝜉𝑑ή

𝜕𝔻+

= 0 

(11) 

and the unique solutions are 

 𝜔(𝑧) =
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − z
+

z

ςz − 1
] 𝑑𝜍   ̶ 

1

𝜋
∫ 𝑢(𝜍) [

1

ς − z
+

z

ςz − 1
]

𝔻+

𝑑𝜉𝑑ή (12) 

and 

 

𝑢(𝑧) = 𝑐    ̶ 
1

2𝜋𝑖
∫ (ϒ1(𝜍) ̶ 𝜍 𝑔(𝜍))

𝜕𝔻+

[𝑙𝑜𝑔 (
𝜍 − 𝑧

𝜍
)   ̶  𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍
   ̶ 

1

𝜋
∫ 𝑔(𝜍) [

𝑧

𝜍(𝜍  ̶ 𝑧)
𝔻+

+
z

1  ̶ 𝜍𝑧
] 𝑑𝜉𝑑ή 

(13) 

according to Theorems 1 and 2. Substituting the Eq. (13) into the Eqs. (10) and (12), we get the 
desired result. 

Theorem 5.  The boundary value problem for the inhomogeneous Bitsadze equation in the 
upper half unit disc 

𝜔�̅��̅� = 𝑔(𝑧) 𝑖𝑛 𝔻+,  𝜔 = ϒ0, 𝑧𝜔𝑧�̅� =  ϒ1 on ∂𝔻+, ωz̅(0) = c 

is solvable for  g ∈ L1(𝔻+; ℂ),  ϒ0, ϒ1 ∈ 𝐶(∂𝔻+, ℂ), c ∈  ℂ  if and only if for 𝑧 ∈ 𝔻+, 

 

𝑐 +
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

𝑧̅(ς − 𝑧̅)
+

1

ς𝑧̅ − 1
] 𝑑𝜍

+
1

2𝜋𝑖
∫ (ϒ1(𝜍)   ̶ 𝜍 𝑔(𝜍))

𝜕𝔻+

 
1 − |𝑧|2

|𝑧|2 [𝑙𝑜𝑔 (
𝜍 − 𝑧

𝜍
 )  ̶  𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍

+
1

𝜋
∫ 𝑔(𝜍)(|𝑧|2 − |𝑡|2) [

1

𝑧̅𝜍(𝑧 − 𝜍)
+

1

𝑧̅(𝑧𝜍 − 1)
]

𝔻+

𝑑𝜉𝑑ή = 0 

(14) 

and 

 
1

2𝜋𝑖
∫ ϒ1(𝜍)  [

−1

ς − 𝑧̅
+

1

ς(1 − 𝜍𝑧̅)
] 𝑑𝜍 +

1

𝜋
∫ 𝑔(𝜍) [

𝑧̅

  (ς    ̶ 𝑧̅)2
+

𝑧̅

 (1 − 𝜍𝑧̅)2]

𝔻+

𝑑𝜉𝑑ή = 0 

𝜕𝔻+

 (15) 

holds. The solution then is uniquely given by 

 

𝜔(𝑧) = 𝑐𝑧̅ +
1

2𝜋𝑖
∫ ϒ0(𝜍)

𝜕𝔻+

[
1

ς − z
+

z

ςz − 1
] 𝑑𝜍

+
1

2𝜋𝑖
∫ ϒ1(𝜍)

𝜕𝔻+

1 − |𝑧|2

𝑧
[𝑙𝑜𝑔 (

𝜍 − 𝑧

𝜍
)  ̶ 𝑙𝑜𝑔(1  ̶ 𝜍𝑧)]

𝑑𝜍

𝜍

+
1

𝜋
∫ 𝑔(𝜍)(|𝜍|2   ̶  |𝑧|2) [

1

𝜍(𝜍   ̶  𝑧)
+

1

1  ̶ 𝜍𝑧
]

𝔻+

𝑑𝜉𝑑ή. 

(16) 

Proof. The proof follows the same steps as Theorem 4, but with Theorem 3 used in place of 
Theorem 2. 



 

65 

Karaca                                                                      Scientific Research Communications, 5(1) 2025 

3. Conclusion 

In this study, we analyzed the solvability and explicit solutions of the Dirichlet, Neumann, 
and Dirichlet-Neumann BVPs for inhomogeneous equations in the upper half unit disc. By 
leveraging fundamental techniques from complex analysis and functional spaces, we 
established necessary and sufficient conditions for the existence of solutions. Our results 
provide a systematic framework for solving these problems and extend previously known 
results by incorporating mixed boundary conditions. 

A key contribution of this work is the explicit construction of solutions for the Dirichlet-
Neumann problem, which highlights the interplay between different types of boundary 
conditions. By expressing solutions in a closed form, we offer a constructive approach that can 
be directly applied in further mathematical and applied studies. These findings not only 
deepen our theoretical understanding of BVPs but also have potential applications in 
mathematical physics, fluid dynamics, and engineering problems where such equations 
naturally arise. 

Moreover, the methodology presented in this study can be extended to more general settings, 
including higher-order equations and different geometric configurations. Future research 
directions could explore nonlinear extensions of these problems, the impact of additional 
boundary constraints, and numerical methods for approximating solutions in cases where 
explicit formulas are difficult to obtain. 

In conclusion, this study contributes to the broader literature on BVPs in complex domains by 
providing a rigorous analytical framework for inhomogeneous equations in the upper half 
unit disc. The results presented here not only unify and extend existing theories but also pave 
the way for new developments in applied mathematics and theoretical physics. 
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