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Abstract

In this study, a novel semi-analytical approach based on the Perturbation-
Iteration Algorithm is proposed for solving high-order delayed differential
equations using history functions. By employing the method of steps to
transform the delayed problem into a system of ordinary differential
equations defined over sub-intervals, the proposed approach offers a
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systematic solution framework distinct from existing methods in the
literature. Another significant contribution of this study is the
development of an algorithmic procedure for determining the initial
function that initiates the iteration process. By incorporating the history
function and continuity conditions between consecutive intervals directly
into the governing equations through matrix operations, this procedure
enables the algorithm to generate smooth and high-precision solutions
within each sub-interval. The proposed method is applied to the dynamic

Delayed Mathieu equation analysis of the delayed Mathieu and delayed damped Mathieu equations,
which play a critical role in nonlinear vibration theory. Parametric
investigations reveal that positive delay coefficients effectively suppress
vibration amplitudes by introducing an artificial damping effect, while
negative delay coefficients may counteract physical damping and drive the
system toward instability; additionally, increases in excitation amplitude
intensify oscillatory responses and slightly reduce convergence speed.
The results demonstrate that the developed approach is an effective and
reliable tool for modelling and analyzing complex engineering problems
involving delay terms.

This is an open access article
under the CC BY NC license.
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1. Introduction

Delay differential equations (DDEs) are essential mathematical tools for modelling dynamic
processes in which the rate of change of a system depends not only on its current state but also
on its past states. As described by Polyanin et al. (2023) and Ford (2025), phenomena involving
"after-effect" and time delay, encountered in fields such as engineering, biology (Rihan, 2021),
and economics, can fundamentally alter a system's dynamic behavior. Accurate modelling of
delay terms is crucial for system stability in high-precision industrial applications, such as
predicting chatter vibrations in milling processes (Yang et al., 2023), as also demonstrated in
high-dimensional delay differential equation studies of crossflow-induced nonlinear
vibrations in steam generator tubes (Sun et al., 2023).
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Obtaining analytical solutions for DDEs is inherently more challenging than for classical
ordinary differential equations. This has led researchers to develop efficient numerical and
semi-analytical methods. The literature presents various numerical techniques, including
Variable Multistage Methods (VMM) for higher-order DDEs (Martin & Garcia, 2002) and the
Direct Adams-Moulton Method (DAM) for second-order problems (Seong et al., 2013). Kumar
and Methi (2021) proposed efficient numerical algorithms for nonlinear DDEs, while Khuri
and Sayfy (2017) developed a Green's function-based iterative approach for functional
differential equations.

In addition to numerical methods, semi-analytical methods are often preferred for solving
complex problems. Barde and Maan (2019) proposed the Natural Homotopy Analysis Method
for nonlinear DDEs, Olvera et al. (2015) used the Enhanced Multistage Homotopy Perturbation
Method (EMHPM), and Aziz and Amin (2016) used Haar wavelets to provide approximate
solutions for delayed equations. Amirali (2023) established stability inequalities for linear
nonhomogeneous Volterra delay integro-differential equations. Recently, Ohira and Ohira
(2025) introduced new approaches involving the Fourier transform for solving DDEs.

In recent years, polynomial-based matrix methods have become prominent in solving complex
differential equations due to their high accuracy and wide applicability. Cevik et al. (2025)
provided a comprehensive review of polynomial matrix collocation methods in engineering
applications. Additionally, Cayan et al. (2022) proposed effective solutions for linear and
nonlinear engineering models using a Taylor-splitting collocation approach. In this context,
Dag and Bicer (2026) developed a new method for nonlinear DDEs using Boole polynomials.
Previous work has also addressed the solution of pantograph-type delayed equations using
orthoexponential polynomials (Bahs: et al., 2015), Adomian decomposition method (Alenazy,
et al., 2022), Taylor polynomials (Yiizbast & Ismailov, 2018) and neural networks (Bahsi &
Bahsi, 2025).

The Mathieu equation, a central focus of this study, plays a key role in the stability analysis of
parametrically excited systems. In their study on generalizations of the Mathieu equation,
Kovacic et al. (2018) highlighted the importance of stability charts for these equations.
However, the analysis of Mathieu equations with time delay and damping still requires novel,
high-precision solution methods, particularly due to the need to account for history functions
(Blanco-Cocom et al., 2012).

The Perturbation-Iteration Algorithm (PIA) has been successfully applied to solve
pantograph-type (variable delay qt) differential equations (Bahsi & Cevik, 2015). However,
while the delay in pantograph-type equations is proportional, in many engineering problems
the delay is a constant duration T (¢t — ), and the system behaviour is determined by a history
function h(t). In such constant delay problems, it is necessary to divide the solution domain
into sub-intervals and ensure continuity within each interval.

In this study, unlike existing methods in the literature, a novel semi-analytical algorithm based
on the PIA is presented for high-order delay differential equations using history functions.
The main innovation of the proposed method is the integration of the PIA with the “method
of steps,” which divides the solution domain into sub-intervals, and the inclusion of a
systematic matrix-based procedure for determining initial functions that ensures continuity at
each sub-interval transition. This approach aims to provide faster convergence and greater
accuracy than methods currently available in the literature. Unlike existing step-based and
semi-analytical methods that impose inter-interval continuity in a limited manner, the
proposed approach introduces a systematic matrix-based continuity enforcement that
simultaneously satisfies all derivative matching conditions, resulting in smoother, more
robust, and faster-converging solutions for high-order delay differential equations.

The study is structured as follows: Section 2 outlines the mathematical framework of the
method. Section 3 evaluates the accuracy of the proposed method by comparing it with
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numerical methods from the literature. Section 4 applies the method to the dynamic analysis
of the delayed Mathieu equation (DME) and delayed damped Mathieu equation (DDM),
which are important in computational mechanics, to examine the effects of delay and damping
parameters on system stability.

2. Methodology

This section presents the mathematical framework for solving delay differential equations
using the PIA. The solution strategy is based on the “method of steps,” which transforms the
delayed problem into a sequence of ordinary differential equations defined over sub-intervals.
First, the general formulation of the problem and the domain decomposition strategy are
introduced. Next, the derivation of the PIA(1,1) algorithm is detailed, followed by the
procedure for determining the initial functions required to ensure continuity between
successive intervals.

2.1. General formulation of delay differential equations based on history functions

The general form of the k-th order delay differential equation, which includes the delay term
u(t — 7) or at least one of its derivatives is given in implicit form as:

F(u("), oulu, ugk), ey Ul Uy, &, t) =0 (1)

where 0 <t < b, u = u(t), uy = u(t — v) such that ¢ > 0, and ¢ is the perturbation parameter.
The conditions for this equation, where a4;, a,;, a3; € R foralli, § € R suchthata < f < b, and
h(t) is defined in the interval [—7, 0], are given as:

k-1

z (aliu(j)(O) + a,u(B) + a3iu(j)(b)) =y, i=1.,k-1 )
j=0
and the history function is defined as:

u(t)=h(t), —-t<t<0 ©)

In the solution of Eq. (1) for the first sub-interval [0, t], the delay term u(t — 1) is calculated
using the history function h(t). Specifically, for t € [0,t], the relationship is defined as
u(t —t) = h(t —t). Within this same sub-interval, any derivative of the delay term
corresponds to the derivative of the history function of the same order. By substituting the
history function or its derivatives into the corresponding delay terms, the solution over the
interval [0, t] is obtained using the proposed PIA algorithm. For the remaining sub-intervals
of the domain [0, b] where t > 1, the history function is defined by the PIA solution obtained
in the preceding sub-interval. Consequently, the global solution for the entire domain is
constructed by combining the solutions derived from all sub-intervals.

2.2. Domain decomposition
The domain of the problem [0, b] is divided into J sub-intervals as follows:

]:[b—o] @)

T
where [.] denotes the ceiling function. The domain D = [0, b] is expressed as the union of sub-
intervals D; for j = 1,2, ..., J:
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J J-1
D= U D = U[(j ~1jd |UlQ = 1) b] (5)
j=1 j=1

The dependent variable u(t) is defined as Up, in the sub-interval D;. The equation is converted
into a system of equations for each sub-interval:

FPi((PH®, .., (WP, uPl,e,t) =0, teD; (6)
For j > 1, the delay terms in the interval D; are equal to the n-th iteration solution of the

previous interval ugj ~!(t). The global n-th iteration solution u, (t) is defined as:

ult(t) » teD,
uﬁz (t) ) t € Dz

wO =TT @) ”)
uZ] ® , teD
2.3. PIA(1,1) algorithm

. . . Dj. . . . . . .
For the n-th iteration solution un] in the interval D;, a direct expansion with a single correction
term is applied:

(uDj)n+1 = (uDj)n +é& (uf]) ) ] = 1' 27 '] (8)

where uDj is the n-th correction term. Substituting Eqg. (8) into Eqg. (6) and expanding in a
c ), & Bq 9 p g

Taylor series up to the first order derivative yields:
PP (P, ™, .., (P, 0,t)

+ ID(D;f)(k> (@™, .. @y, 0,t) ((ufj)n)(k)
u

+ 17(ng), ((qu)n(k), ., WPN),,0, t) £ ((uf’) )I )
+ P (@, o, P, 0,8) (),

HE (@, P, 0,) £ = 0
This equation can be simplified as the PIA(1,1) algorithm:

D; D\ D; D\ D; [ Dj p; FPi
F(uij)(k) (uC’)n + ot F(u’Dj), (ucf)n +F (uC’)n S (10)

2.4. Determination of initial functions

For j > 1, the initial function uODj (t) for the interval D; is determined using the PIA(1,1) solution
obtained in the previous interval D;_;, ensuring continuity at the boundary (j —1). The
continuity conditions are:

@)™ (G -07) = ()" (G- m=01,k—1 (11)
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The initial function is defined by a polynomial of degree (k — 1), PkD J (&) =ap +at + a; t? +
-+ ap_,t*71. The coefficient matrix APJ of this polynomial is obtained by:

APi=[a, a; a; - ax_4]T = (MP>)"1BP; (12)
Here, MP/ and B?J are defined as follows:
r 3 k—1
1 —-Dr ((/ - 1)7)2 ((] B DT) k-2
w01 20— Ge=D(G-1D)
|00 2 (k= 1)k - 2)(G - D)
o o 0 - (k — 1)1

(
B = (12" (G- 19
(

3. Numerical Validation

In this section, the proposed PIA(1,1) algorithm is applied to a benchmark delay differential
equation to validate its accuracy and efficiency. The obtained semi-analytical results are
compared with the exact solution and other numerical methods available in the literature to
demonstrate the performance of the proposed approach.

Consider the second-order linear delay differential equation given by:

u’' (@) +ult) =ult—-1), te][0,2] (13)

subject to the history function and initial condition:

u(t) =t>+3t+2, -1<t<0; u'(0)=0

According to the domain decomposition strategy described in Section 2, since the delay is T =
1 and the domain is b = 2, the problem is divided into /] = 2 sub-intervals: D; = [0,1] and D, =
[1,2]. The global solution is constructed as:

ulr(t) , teD,
up?(t) , teD,

un(t) = {

Solution for the First Interval (D,)

For t € [0,1], the delay term u(t—1) falls into the history interval [—1,0]. Thus, the
perturbation equation is constructed using the known history function h(t):

WP)'" +euPr—h(t—-1)=0
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Substituting h(t —1) = (t —1)?+3(t — 1) + 2 and applying the PIA(1,1) expansion, the
correction term (ufl) is derived. To determine the initial function uOD1 (t), the boundary
conditions at t = 0 are used. The coefficient matrix yields a simple starting function uODl(t) =
= P1D1 (t) = 2. Following the iteration process, the solution for the first interval is obtained as:

4 3

t* ot
Dy = — _ 2
u; 1 (t) Sttt 2

6 5 4 43 42
= T Ty
2 360 120 6 6 2
Solution for the Second Interval (D)
For t € [1,2], the delay term u(t — 1) depends on the solution u”1(t) found in the previous
step. The system equation becomes:
(uP2)" + euPz — uﬁl(t -1)=0

Crucially, to ensure continuity at the node point t = 1, the initial function uOD2 (t) is determined
using the continuity conditions:

wP2(1) = w2 (1), (w@?) (1) = (uB) (1)

Using the matrix operation defined in Eq. (12), the coefficient matrix Ap, is calculated, yielding

the initial function ugz ) =222 By employing this initial function in the PIA algorithm,
360 120
the polynomial solution for the second interval is computed as follow:
Dy(py 2
t) = + e —— =+ —— 2+ 2
" (8) 20160 5040 180 120 6 6
ey 10 +9 .\ +8 .\ t7 +6 £5 .\ 4 s £3 P
Y2 ~ 1814400 362880 10080 5040 360 120 6 6

Finally, combining the results from both steps, the global solution at the second iteration is
expressed as:

(tt tt ) D
—————t—t+——t t €
360 120 6 6 * ’ !
£10 £9 ¢8 +7
— — + +
1814400 362880 10080 5040
te 5 ¢t 13
—————t—+—— t? 4 2
\ 360 120 6 6
The results obtained by the PIA(1,1) algorithm are compared with the VMM (Martin & Garcia,
2002) and the-DAM (Seong et al., 2013). Figure 1 presents the absolute errors at selected points.

up(t) = 4

, t€ED,
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Figure 1. Comparison of absolute errors for PIA(1, 1) against VMM and DAM methods

As demonstrated in Figure 1, the PIA(1,1) algorithm achieves significantly lower error rates
(10716 to 107%* range) compared to VMM and DAM (107¢ to 107° range). Furthermore,
regarding computational cost defined by the “Totally Called Function” (FCN) count, PIA
requires only 52 evaluations for n =5 and 60 for n = 6, whereas DAM requires 61-73
evaluations. Here, FCN denotes the total number of function evaluations required by the
algorithm and is used as a hardware-independent measure of computational cost. The
maximum absolute error decreases exponentially with the number of iterations, achieving
high precision in minimal CPU time (approx. 7.66s for n = 6).

The convergence speed is further analyzed in Table 1. It is observed that while the CPU time
increases linearly with the number of iterations, the error decreases exponentially, achieving
a maximum absolute error of 2.61 x 1071 in just 7.66 seconds.

Table 1. Maximum absolute error and CPU time for different iterations

n 2 3 4 5 6
E, 1.25e — 02 3.10e — 04 4.44e — 06 4.05e — 08 2.61le — 10
CPU time 2.69s 3.94s 5.26s 6.48s 7.66s

4. Applications in Computational Mechanics

In this section, the efficacy of the proposed PIA is demonstrated by applying it to complex
engineering problems modeled by delay differential equations. Specifically, the method is
employed to analyze the dynamic behavior of the DME and the DDME, which appear
frequently in nonlinear vibration theory and control systems.

4.1. Dynamic analysis of the DME

The Mathieu equation is a quintessential model in the study of parametrically excited systems,
describing phenomena such as the vibration of elliptical membranes and the stability of
structures under periodic loading. A classic physical realization of this problem is a
mathematical pendulum with a vertically moving support, as illustrated in Figure 2.
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A cost

Figure 2. Mathematical pendulum with a vertically moving support (Kovacic et al., 2018)

When a linear control force is applied to stabilize such a system, the feedback mechanism
inherently introduces a time delay. The equation of motion for this delayed system is given
by:

u”"(t) + (6 + ecost)u(t) = Cu(t — 1) (14)

where § represents the square of the natural frequency, € is the amplitude of parametric
excitation, ¢ is the delay coefficient, and T is the time delay (taken as 21).

4.1.1. Numerical implementation and comparison

The problem is solved over the domain [0, 4n] using the PIA(1,1) algorithm with domain
decomposition (J = 2). For parameters 6 = 18, € = 1, and ¢ = 0.5, the semi-analytical solutions
obtained by PIA are compared with the numerical results from the MATLAB dde23 solver.

As shown in Figure 3, the second and third iteration solutions of PIA exhibit excellent
agreement with the numerical solution, confirming the high accuracy of the proposed method
even for complex oscillatory behavior.

00002 Numerical Solution (dde23) = = =PIA(1,1) for n=2 ===-- PIA(1,1) for n=3

A AAA DA
iRTRRIATATRATAR

-0,0013

0 314 6,28 9,42 12,56
t

Figure 3. Comparison of the second and third iteration PIA(1,1) solutions with the MATLAB
(dde23) numerical solution for the DME (6 = 18.0, e =1, { = 0.5, T = 2m)
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4.1.2. Parametric analysis: Effect of delay and excitation

The influence of the delay coefficient () on the system's dynamics is analyzed in Figure 4. It is
observed that increasing the delay coefficient (from { = 0 to { = 1) reduces the amplitude of
oscillations. This phenomenon suggests that the delay term acts as a damping mechanism in
the system. Mathematically, this can be approximated by the expansion {u(t — t) = qu(t) —
(tu’(t), where the term —{tu’(t) introduces a velocity-dependent damping effect. It should be
emphasized that this interpretation represents an approximate, first-order physical analogy
intended to provide qualitative insight into the observed amplitude reduction, rather than an
exact equivalence to classical viscous damping.

—0 - =-05
0,0008
0,0003
S 0002
-0,0007 v
-0,0012
0 3 628 9,42 12,56

t

Figure 4. Fourth iteration PIA(1,1) solutions for different delay coefficients
7=0,051(6=18¢e=1,1=2m)

The effect of the perturbation parameter €, which represents the magnitude of the parametric
excitation, is investigated in Figure 5 and Figure 6. As ¢ increases (e.g., from € = 1 to € = 5),
the system becomes "stiffer," and the convergence rate of the algorithm decreases slightly,
requiring higher iterations (e.g., n = 6) to match the numerical solution. Furthermore, as
shown in Figure 6, increasing ¢ leads to a significant increase in the vibration amplitude.
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Numerical Solution = = =PIA(1,1) for n=5 = . = PIA(1,1) for n=5
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Figure 5. Comparison of PIA(1,1) solutions (5th and 6th iterations) with numerical results for
high parametric excitation € = 5
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Figure 6. PIA(1,1) solutions for varying excitation amplitudes € = 1, 5,10
(6=18,0=0.5,t=2m)

Finally, the effect of the natural frequency parameter d is presented in Figure 7. Variations in
0 directly alter the oscillation period of the system, demonstrating the method's capability to
capture frequency shifts accurately.
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Figure 7. PIA(1,1) solutions for different § values of 5, 10, and 18

4.2. Dynamic analysis of the DDME
To provide a more comprehensive analysis of engineering systems where both physical
damping and time delays are present, we consider the DDME:
u"(t) + xu'(t) + (6 + ecost)u(t) = tu(t — 1)
where k is the physical damping coefficient.

(15)

The performance of the PIA(1,1) algorithm is compared against EMHPM (Olvera et al., 2015)
and the standard numerical solver. Figure 8 presents the results for k = 0.2,8 = 3.0, = 1, and

(= —1. The comparison reveals that the PIA solution aligns more closely with the exact

numerical solution than the EMHPM solution, highlighting the superior convergence
properties of the proposed algorithm for damped delayed systems.

0,001
e Numerical Solution - — = PIA(1,) for n=5 - . = EMHPM
0,0005 <
= 0
s
-0,0005
-0,001
-0,0015
0 314 6,28 9,42 12,56
t
Figure 8. Comparison of PIA(1,1) (5th iteration), EMHPM (1st order), and numerical
solutions for the DDME
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The effect of the physical damping coefficient k is illustrated in Figure 9. As expected,

increasing k rapidly decays the oscillation amplitude, validating the method's handling of the
first-derivative term.
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Figure 9. Fifth iteration PIA(1,1) solutions for different damping coefficients k = 0, 0.1, 0.2

A critical analysis is performed in Figure 10, which examines the interplay between physical
damping and the delay coefficient (¢). While positive values of { (e.g., 0.5) reinforce the
damping effect, a negative delay coefficient (e.g., { = —0.87) counteracts the physical
damping. This leads to a scenario where the system maintains a certain amplitude or

approaches instability, despite the presence of physical damping. This capability to predict
stability boundaries is crucial for the design of active control systems.
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Figure 10. PIA(1,1) solutions for varying delay coefficients { = 0, 0.5, —0.87
under physical damping k = 0.2
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5. Conclusion

In this study, the PIA(1,1) was successfully extended and applied to solve high-order delay
differential equations. By integrating the method of steps with a robust continuity enforcement
procedure based on matrix operations, the algorithm effectively manages the history functions
and time delays inherent in such systems.

Numerical validation on a linear benchmark problem demonstrated that the proposed
PIA(1,1) algorithm outperforms widely used techniques in the literature, such as the VMM
and the DAM, in both solution accuracy and computational efficiency. The method has shown
its suitability for computationally intensive engineering problems by achieving high-precision
results with minimal CPU time.

Application of the method to the DME provided valuable physical insights into the stability
of parametrically excited systems. Analysis of the results indicates that the delay term acts as
an '"artificial" damping mechanism; specifically, increasing the positive delay coefficient
significantly reduces vibration amplitudes, thereby stabilizing the system. Conversely,
investigations of the DDME revealed that negative delay coefficients act as an energy source
counteracting physical damping, potentially driving the system towards instability.
Furthermore, comparative analyses indicated that the PIA algorithm produces results closer
to the exact numerical solution than the EMHPM, particularly for complex damped systems.
In conclusion, this study confirms that the proposed PIA(1,1) algorithm is a powerful, reliable,
and efficient mathematical tool for the dynamic analysis and design of linear and nonlinear
engineering systems with time delays.

Despite its accuracy and efficiency for constant-delay problems, the proposed method is
primarily suited to delay differential equations with fixed delays and moderate nonlinearity.
For strongly nonlinear or high-dimensional systems, the size of the resulting algebraic systems
and the computational cost may increase, potentially affecting efficiency. Moreover,
extensions of the present framework to problems involving state-dependent delays are not
considered in this study and remain an important direction for future research.
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