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Abstract 
In this study, a novel semi-analytical approach based on the Perturbation-
Iteration Algorithm is proposed for solving high-order delayed differential 
equations using history functions. By employing the method of steps to 
transform the delayed problem into a system of ordinary differential 
equations defined over sub-intervals, the proposed approach offers a 
systematic solution framework distinct from existing methods in the 
literature. Another significant contribution of this study is the 
development of an algorithmic procedure for determining the initial 
function that initiates the iteration process. By incorporating the history 
function and continuity conditions between consecutive intervals directly 
into the governing equations through matrix operations, this procedure 
enables the algorithm to generate smooth and high-precision solutions 
within each sub-interval. The proposed method is applied to the dynamic 
analysis of the delayed Mathieu and delayed damped Mathieu equations, 
which play a critical role in nonlinear vibration theory. Parametric 
investigations reveal that positive delay coefficients effectively suppress 
vibration amplitudes by introducing an artificial damping effect, while 
negative delay coefficients may counteract physical damping and drive the 
system toward instability; additionally, increases in excitation amplitude 
intensify oscillatory responses and slightly reduce convergence speed.  
The results demonstrate that the developed approach is an effective and 
reliable tool for modelling and analyzing complex engineering problems 
involving delay terms.  

 

1. Introduction  
Delay differential equations (DDEs) are essential mathematical tools for modelling dynamic 
processes in which the rate of change of a system depends not only on its current state but also 
on its past states. As described by Polyanin et al. (2023) and Ford (2025), phenomena involving 
"after-effect" and time delay, encountered in fields such as engineering, biology (Rihan, 2021), 
and economics, can fundamentally alter a system's dynamic behavior. Accurate modelling of 
delay terms is crucial for system stability in high-precision industrial applications, such as 
predicting chatter vibrations in milling processes (Yang et al., 2023), as also demonstrated in 
high-dimensional delay differential equation studies of crossflow-induced nonlinear 
vibrations in steam generator tubes (Sun et al., 2023). 
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Obtaining analytical solutions for DDEs is inherently more challenging than for classical 
ordinary differential equations. This has led researchers to develop efficient numerical and 
semi-analytical methods. The literature presents various numerical techniques, including 
Variable Multistage Methods (VMM) for higher-order DDEs (Martín & García, 2002) and the 
Direct Adams-Moulton Method (DAM) for second-order problems (Seong et al., 2013). Kumar 
and Methi (2021) proposed efficient numerical algorithms for nonlinear DDEs, while Khuri 
and Sayfy (2017) developed a Green's function-based iterative approach for functional 
differential equations.  

In addition to numerical methods, semi-analytical methods are often preferred for solving 
complex problems. Barde and Maan (2019) proposed the Natural Homotopy Analysis Method 
for nonlinear DDEs, Olvera et al. (2015) used the Enhanced Multistage Homotopy Perturbation 
Method (EMHPM), and Aziz and Amin (2016) used Haar wavelets to provide approximate 
solutions for delayed equations. Amirali (2023) established stability inequalities for linear 
nonhomogeneous Volterra delay integro-differential equations. Recently, Ohira and Ohira 
(2025) introduced new approaches involving the Fourier transform for solving DDEs.  

In recent years, polynomial-based matrix methods have become prominent in solving complex 
differential equations due to their high accuracy and wide applicability. Çevik et al. (2025) 
provided a comprehensive review of polynomial matrix collocation methods in engineering 
applications. Additionally, Cayan et al. (2022) proposed effective solutions for linear and 
nonlinear engineering models using a Taylor-splitting collocation approach. In this context, 
Dağ and Biçer (2026) developed a new method for nonlinear DDEs using Boole polynomials. 
Previous work has also addressed the solution of pantograph-type delayed equations using 
orthoexponential polynomials (Bahşı et al., 2015), Adomian decomposition method (Alenazy, 
et al., 2022), Taylor polynomials (Yüzbaşı & Ismailov, 2018) and neural networks (Bahşı & 
Bahşı, 2025). 

The Mathieu equation, a central focus of this study, plays a key role in the stability analysis of 
parametrically excited systems. In their study on generalizations of the Mathieu equation, 
Kovacic et al. (2018) highlighted the importance of stability charts for these equations. 
However, the analysis of Mathieu equations with time delay and damping still requires novel, 
high-precision solution methods, particularly due to the need to account for history functions 
(Blanco-Cocom et al., 2012). 

The Perturbation-Iteration Algorithm (PIA) has been successfully applied to solve 
pantograph-type (variable delay 𝑞𝑡) differential equations (Bahşi & Çevik, 2015). However, 
while the delay in pantograph-type equations is proportional, in many engineering problems 
the delay is a constant duration τ (𝑡 − τ), and the system behaviour is determined by a history 
function ℎ(𝑡). In such constant delay problems, it is necessary to divide the solution domain 
into sub-intervals and ensure continuity within each interval. 

In this study, unlike existing methods in the literature, a novel semi-analytical algorithm based 
on the PIA is presented for high-order delay differential equations using history functions. 
The main innovation of the proposed method is the integration of the PIA with the “method 
of steps,” which divides the solution domain into sub-intervals, and the inclusion of a 
systematic matrix-based procedure for determining initial functions that ensures continuity at 
each sub-interval transition. This approach aims to provide faster convergence and greater 
accuracy than methods currently available in the literature. Unlike existing step-based and 
semi-analytical methods that impose inter-interval continuity in a limited manner, the 
proposed approach introduces a systematic matrix-based continuity enforcement that 
simultaneously satisfies all derivative matching conditions, resulting in smoother, more 
robust, and faster-converging solutions for high-order delay differential equations. 

The study is structured as follows: Section 2 outlines the mathematical framework of the 
method. Section 3 evaluates the accuracy of the proposed method by comparing it with 
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numerical methods from the literature. Section 4 applies the method to the dynamic analysis 
of the delayed Mathieu equation (DME) and delayed damped Mathieu equation (DDM), 
which are important in computational mechanics, to examine the effects of delay and damping 
parameters on system stability. 

2. Methodology 
This section presents the mathematical framework for solving delay differential equations 
using the PIA. The solution strategy is based on the “method of steps,” which transforms the 
delayed problem into a sequence of ordinary differential equations defined over sub-intervals. 
First, the general formulation of the problem and the domain decomposition strategy are 
introduced. Next, the derivation of the PIA(1,1) algorithm is detailed, followed by the 
procedure for determining the initial functions required to ensure continuity between 
successive intervals. 

2.1. General formulation of delay differential equations based on history functions 
The general form of the 𝑘-th order delay differential equation, which includes the delay term 
𝑢(𝑡 − 𝜏) or at least one of its derivatives is given in implicit form as: 

 𝐹"𝑢("), … , 𝑢$, 𝑢, 𝑢%
("), … , 𝑢%$ , 𝑢%, 𝜀, 𝑡( = 0 (1) 

where 0 ≤ 𝑡 ≤ 𝑏, 𝑢 = 𝑢(𝑡), 𝑢! = 𝑢(𝑡 − 𝜏) such that 𝜏 > 0, and ε is the perturbation parameter. 
The conditions for this equation, where 𝛼"# , 𝛼$# , 𝛼%# ∈ 𝑅 for all 𝑖, 𝛽 ∈ 𝑅 such that 𝑎 < 𝛽 < 𝑏, and 
ℎ(𝑡) is defined in the interval [−𝜏, 0], are given as: 

 +"𝛼&'𝑢(()(0) + 𝛼)'𝑢(()(𝛽) + 𝛼*'𝑢(()(𝑏)(
"+&

(,-

= 𝛾' , 	 𝑖 = 1,… , 𝑘 − 1 (2) 

and the history function is defined as: 

 𝑢(𝑡) = ℎ(𝑡), 	 −𝜏 ≤ 𝑡 ≤ 0 (3) 

In the solution of Eq. (1) for the first sub-interval [0, τ], the delay term 𝑢(𝑡 − τ) is calculated 
using the history function ℎ(𝑡). Specifically, for 𝑡 ∈ [0, τ], the relationship is defined as 
𝑢(𝑡 − τ) = ℎ(𝑡 − τ). Within this same sub-interval, any derivative of the delay term 
corresponds to the derivative of the history function of the same order. By substituting the 
history function or its derivatives into the corresponding delay terms, the solution over the 
interval [0, τ] is obtained using the proposed PIA algorithm. For the remaining sub-intervals 
of the domain [0, 𝑏] where 𝑡	 ≥ τ, the history function is defined by the PIA solution obtained 
in the preceding sub-interval. Consequently, the global solution for the entire domain is 
constructed by combining the solutions derived from all sub-intervals. 

2.2. Domain decomposition 
The domain of the problem [0, 𝑏] is divided into 𝐽 sub-intervals as follows: 

 𝐽 = <
𝑏 − 0
𝜏 = (4) 

where ⌈. ⌉ denotes the ceiling function. The domain 𝐷 = [0, 𝑏] is expressed as the union of sub-
intervals 𝐷& for 𝑗 = 1, 2, … , 𝐽: 
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 𝐷 =?𝐷(

.

(,&

= @?[(𝑗 − 1)𝜏, 𝑗𝜏]
.+&

(,&

D ∪ [(𝐽 − 1)𝜏, 𝑏] (5) 

The dependent variable 𝑢(𝑡) is defined as 𝑢'! in the sub-interval 𝐷&. The equation is converted 
into a system of equations for each sub-interval: 

 𝐹/!F(𝑢/!)("), … , (𝑢/!)$, 𝑢/! , 𝜀, 𝑡G = 0, 	 𝑡 ∈ 𝐷(  (6) 

For 𝑗 > 1, the delay terms in the interval 𝐷& are equal to the 𝑛-th iteration solution of the 
previous interval 𝑢(

'!"#(𝑡). The global 𝑛-th iteration solution 𝑢((𝑡) is defined as: 

 𝑢0(𝑡) =

⎩
⎪
⎨

⎪
⎧𝑢0

/"(𝑡)
𝑢0
/#(𝑡)

,
, 		𝑡 ∈ 𝐷&𝑡 ∈ 𝐷)

⋮ ⋮ ⋮
𝑢0
/$(𝑡) , 𝑡 ∈ 𝐷.

	 (7) (7) 

2.3. PIA(1,1) algorithm 

For the 𝑛-th iteration solution 𝑢(
'! in the interval 𝐷&, a direct expansion with a single correction 

term is applied: 

 (𝑢/!)01& = (𝑢/!)0 + 𝜀 "𝑢2
/!(

0
, 𝑗 = 1, 2, … , 𝐽 (8) 

where G𝑢)
'!H

(
 is the 𝑛-th correction term. Substituting Eq. (8) into Eq. (6) and expanding in a 

Taylor series up to the first order derivative yields: 

 

𝐹/! "(𝑢/!)0
("), … , (𝑢/!)0, 0, 𝑡(

+ 𝐹
34%!5

(')
/! "(𝑢/!)0

("), … , (𝑢/!)0, 0, 𝑡( 𝜀 ""𝑢2
/!(

0
(
(")

+ 𝐹
34%!5

)
/! "(𝑢/!)0

("), … , (𝑢/!)0, 0, 𝑡( 𝜀 ""𝑢2
/!(

0
(
$

+ 𝐹
4%!
/! "(𝑢/!)0

("), … , (𝑢/!)0, 0, 𝑡( 𝜀(𝑢2)0
/!

+ 𝐹6
/! "(𝑢/!)0

("), … , (𝑢/!)0, 0, 𝑡( 𝜀 = 0 

(9) 

This equation can be simplified as the PIA(1,1) algorithm: 

 𝐹
34%!5

(')
/! "𝑢2

/!(
0

(")
+⋯+ 𝐹

34%!5
)

/! "𝑢2
/!(

0

$
+ 𝐹

4%!
/! "𝑢2

/!(
0
= −𝐹6

/! −
𝐹/!
𝜀  (10) 

2.4. Determination of initial functions 

For 𝑗 > 1, the initial function 𝑢*
'!(𝑡) for the interval 𝐷& is determined using the PIA(1,1) solution 

obtained in the previous interval 𝐷&+", ensuring continuity at the boundary (𝑗 − 1). The 
continuity conditions are: 

 "𝑢-
/!(

(7)
F(𝑗 − 1)𝜏G = "𝑢0

/!*"(
(7)

F(𝑗 − 1)𝜏G, 	 𝑚 = 0, 1, … , 𝑘 − 1 (11) 
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The initial function is defined by a polynomial of degree (𝑘 − 1), 𝑃,+"
'! (𝑡) = 𝑎* + 𝑎"𝑡 + 𝑎$𝑡$ +

⋯+ 𝑎,+"𝑡,+". The coefficient matrix 𝐀'! of this polynomial is obtained by: 

 𝐀/! = [𝑎- 𝑎& 𝑎) ⋯ 𝑎"+&]8 = (𝐌/!)+&𝐁/! 	 (12) 

Here, 𝐌'! and 𝐁'! are defined as follows: 

 𝐌/! =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 (𝑗 − 1)𝜏 F(𝑗 − 1)𝜏G)

0
0

1
0

2(𝑗 − 1)𝜏
2

⋯
F(𝑗 − 1)𝜏G"+&

(𝑘 − 1)F(𝑗 − 1)𝜏G
"+)

(𝑘 − 1)(𝑘 − 2)F(𝑗 − 1)𝜏G"+*

⋮ ⋱ ⋮
0										 0														 	0									 ⋯ (𝑘 − 1)! ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  

 

 𝐁/! =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑢0

/!*"F(𝑗 − 1)𝜏G

"𝑢0
/!*"(

$
F(𝑗 − 1)𝜏G

"𝑢0
/!*"(

$$
F(𝑗 − 1)𝜏G

⋮

"𝑢0
/!*"(

("+&)
F(𝑗 − 1)𝜏G⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

3. Numerical Validation 
In this section, the proposed PIA(1,1) algorithm is applied to a benchmark delay differential 
equation to validate its accuracy and efficiency. The obtained semi-analytical results are 
compared with the exact solution and other numerical methods available in the literature to 
demonstrate the performance of the proposed approach. 

Consider the second-order linear delay differential equation given by: 

 𝑢$$(𝑡) + 𝑢(𝑡) = 𝑢(𝑡 − 1), 	 𝑡 ∈ [0,2] (13) 

subject to the history function and initial condition: 

 𝑢(𝑡) = 𝑡) + 3𝑡 + 2,	 −1 ≤ 𝑡 ≤ 0;	 𝑢$(0) = 0  

According to the domain decomposition strategy described in Section 2, since the delay is τ =
	1 and the domain is 𝑏 = 2, the problem is divided into 𝐽 = 2 sub-intervals: 𝐷" = [0,1] and 𝐷$ =
[1,2]. The global solution is constructed as: 

 𝑢0(𝑡) = `
𝑢0
/"(𝑡) , 𝑡 ∈ 𝐷&
𝑢0
/#(𝑡) , 𝑡 ∈ 𝐷)

  

Solution for the First Interval (𝐃𝟏) 

For 𝑡 ∈ [0,1], the delay term 𝑢(𝑡 − 1) falls into the history interval [−1,0]. Thus, the 
perturbation equation is constructed using the known history function ℎ(𝑡): 

 (𝑢/")$$ + ε𝑢/" − ℎ(𝑡 − 1) = 0  
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Substituting ℎ(𝑡 − 1) = (𝑡 − 1)$ + 3(𝑡 − 1) + 2 and applying the PIA(1,1) expansion, the 
correction term Q𝑢)

'#R is derived. To determine the initial function 𝑢*
'#(𝑡), the boundary 

conditions at 𝑡 = 0 are used. The coefficient matrix yields a simple starting function 𝑢*
'#(𝑡) =

= 𝑃"
'#(𝑡) = 2. Following the iteration process, the solution for the first interval is obtained as: 

 
𝑢&
/"(𝑡) =

𝑡9

12 +
𝑡*

6 −	𝑡
) + 	2 

 

𝑢)
/"(𝑡) = −

𝑡:

360 −
𝑡;

120 +
𝑡9

6 +
𝑡*

6 −
𝑡)

2 + 2 

 

Solution for the Second Interval (𝐃𝟐) 

For 𝑡 ∈ [1,2], the delay term 𝑢(𝑡 − 1) depends on the solution 𝑢'#(𝑡) found in the previous 
step. The system equation becomes: 

 (𝑢/#)$$ + ε𝑢/# − 𝑢0
/"(𝑡 − 1) = 0  

Crucially, to ensure continuity at the node point  𝑡 = 1, the initial function 𝑢*
'$(𝑡) is determined 

using the continuity conditions: 

 𝑢-
/#(1) = 𝑢0

/"(1), 	 F𝑢-
/#G

$
(1) = F𝑢0

/"G
$
(1)  

Using the matrix operation defined in Eq. (12), the coefficient matrix 𝐀'$ is calculated, yielding 
the initial function 𝑢*

'$(𝑡) = /0/
%1*

− "*/
"$*

𝑡. By employing this initial function in the PIA algorithm, 
the polynomial solution for the second interval is computed as follow: 

 

𝑢&
/#(𝑡) =

𝑡<

20160
+

𝑡=

5040
−

𝑡:

180
−

𝑡;

120
+
𝑡9

6
+
𝑡*

6
−	𝑡) + 	2

𝑢)
/#(𝑡) = −

𝑡&-

1814400 −
𝑡>

362880 +
𝑡<

10080 +
𝑡=

5040 −
𝑡:

360 −
𝑡;

120 +
𝑡9

6 +
𝑡*

6 −	𝑡
) + 	2

  

Finally, combining the results from both steps, the global solution at the second iteration is 
expressed as: 

 𝑢)(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧−

𝑡:

360 −
𝑡;

120 +
𝑡9

6 +
𝑡*

6 −	𝑡
) + 	2 , 𝑡 ∈ 𝐷&

−
𝑡&-

1814400
−

𝑡>

362880
+

𝑡<

10080
+

𝑡=

5040

−
𝑡:

360
−

𝑡;

120
+
𝑡9

6
+
𝑡*

6
−	𝑡) + 	2

, 𝑡 ∈ 𝐷)
  

The results obtained by the PIA(1,1) algorithm are compared with the VMM (Martín & García, 
2002) and the DAM (Seong et al., 2013). Figure 1 presents the absolute errors at selected points. 
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Figure 1. Comparison of absolute errors for PIA(1, 1) against VMM and DAM methods 

 
As demonstrated in Figure 1, the PIA(1,1) algorithm achieves significantly lower error rates 
(10+"1 to 10+$2 range) compared to VMM and DAM (10+1 to 10+0 range). Furthermore, 
regarding computational cost defined by the “Totally Called Function” (FCN) count, PIA 
requires only 52 evaluations for 𝑛 = 5 and 60 for 𝑛 = 6, whereas DAM requires 61-73 
evaluations. Here, FCN denotes the total number of function evaluations required by the 
algorithm and is used as a hardware-independent measure of computational cost. The 
maximum absolute error decreases exponentially with the number of iterations, achieving 
high precision in minimal CPU time (approx. 7.66s for 𝑛 = 6). 

The convergence speed is further analyzed in Table 1. It is observed that while the CPU time 
increases linearly with the number of iterations, the error decreases exponentially, achieving 
a maximum absolute error of 2.61 × 10+"* in just 7.66 seconds. 

 

Table 1. Maximum absolute error and CPU time for different iterations 

𝒏 𝟐 𝟑 𝟒 𝟓 𝟔 

𝐸+ 1.25𝑒 − 02 3.10𝑒 − 04 4.44𝑒 − 06 4.05𝑒 − 08 2.61𝑒 − 10 

CPU time 2.69𝑠 3.94𝑠 5.26𝑠 6.48𝑠 7.66𝑠 

4. Applications in Computational Mechanics 
In this section, the efficacy of the proposed PIA is demonstrated by applying it to complex 
engineering problems modeled by delay differential equations. Specifically, the method is 
employed to analyze the dynamic behavior of the DME and the DDME, which appear 
frequently in nonlinear vibration theory and control systems. 

4.1. Dynamic analysis of the DME 
The Mathieu equation is a quintessential model in the study of parametrically excited systems, 
describing phenomena such as the vibration of elliptical membranes and the stability of 
structures under periodic loading. A classic physical realization of this problem is a 
mathematical pendulum with a vertically moving support, as illustrated in Figure 2. 
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Figure 2. Mathematical pendulum with a vertically moving support (Kovacic et al., 2018) 

 
When a linear control force is applied to stabilize such a system, the feedback mechanism 
inherently introduces a time delay. The equation of motion for this delayed system is given 
by: 

 𝑢$$(𝑡) + (δ + ε cos 𝑡)𝑢(𝑡) = ζ𝑢(𝑡 − τ) (14) 

where δ represents the square of the natural frequency, ε is the amplitude of parametric 
excitation, ζ is the delay coefficient, and τ is the time delay (taken as 2π). 

4.1.1. Numerical implementation and comparison 
The problem is solved over the domain [0, 4π] using the PIA(1,1) algorithm with domain 
decomposition (𝐽 = 2). For parameters δ = 18, ε = 1, and ζ = 0.5, the semi-analytical solutions 
obtained by PIA are compared with the numerical results from the MATLAB dde23 solver. 

As shown in Figure 3, the second and third iteration solutions of PIA exhibit excellent 
agreement with the numerical solution, confirming the high accuracy of the proposed method 
even for complex oscillatory behavior. 

 

 
Figure 3. Comparison of the second and third iteration PIA(1,1) solutions with the MATLAB 

(dde23) numerical solution for the DME (δ = 18.0, ε = 1, ζ = 0.5, τ = 2π) 
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4.1.2. Parametric analysis: Effect of delay and excitation 
The influence of the delay coefficient (ζ) on the system's dynamics is analyzed in Figure 4. It is 
observed that increasing the delay coefficient (from ζ = 0 to ζ = 1) reduces the amplitude of 
oscillations. This phenomenon suggests that the delay term acts as a damping mechanism in 
the system. Mathematically, this can be approximated by the expansion ζ𝑢(𝑡 − τ) ≈ ζ𝑢(𝑡) −
ζτ𝑢3(𝑡), where the term −ζτ𝑢3(𝑡) introduces a velocity-dependent damping effect. It should be 
emphasized that this interpretation represents an approximate, first-order physical analogy 
intended to provide qualitative insight into the observed amplitude reduction, rather than an 
exact equivalence to classical viscous damping. 

 

 
Figure 4. Fourth iteration PIA(1,1) solutions for different delay coefficients 

 ζ = 0, 0.5, 1 (δ = 18, ε = 1, τ = 2π) 

 

The effect of the perturbation parameter ε, which represents the magnitude of the parametric 
excitation, is investigated in Figure 5 and Figure 6. As ε increases (e.g., from ε = 1 to ε = 5), 
the system becomes "stiffer," and the convergence rate of the algorithm decreases slightly, 
requiring higher iterations (e.g., 𝑛 = 6) to match the numerical solution. Furthermore, as 
shown in Figure 6, increasing ε leads to a significant increase in the vibration amplitude. 
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Figure 5. Comparison of PIA(1,1) solutions (5th and 6th iterations) with numerical results for 

high parametric excitation ε = 5 

 

 

 
Figure 6. PIA(1,1) solutions for varying excitation amplitudes ε = 1, 5, 10 

 (δ = 18, ζ = 0.5, τ = 2π) 

 

Finally, the effect of the natural frequency parameter δ is presented in Figure 7. Variations in 
δ directly alter the oscillation period of the system, demonstrating the method's capability to 
capture frequency shifts accurately. 
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Figure 7. PIA(1,1) solutions for different δ values of 5, 10, and 18 

 

4.2. Dynamic analysis of the DDME  
To provide a more comprehensive analysis of engineering systems where both physical 
damping and time delays are present, we consider the DDME: 

 𝑢$$(𝑡) + κ𝑢$(𝑡) + (δ + ε cos 𝑡)𝑢(𝑡) = ζ𝑢(𝑡 − τ) (15) 

where κ is the physical damping coefficient. 

The performance of the PIA(1,1) algorithm is compared against EMHPM (Olvera et al., 2015) 
and the standard numerical solver. Figure 8 presents the results for κ = 0.2, δ = 3.0, ε = 1, and 
ζ = −1. The comparison reveals that the PIA solution aligns more closely with the exact 
numerical solution than the EMHPM solution, highlighting the superior convergence 
properties of the proposed algorithm for damped delayed systems. 
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The effect of the physical damping coefficient κ is illustrated in Figure 9. As expected, 
increasing κ rapidly decays the oscillation amplitude, validating the method's handling of the 
first-derivative term. 

 

 
Figure 9. Fifth iteration PIA(1,1) solutions for different damping coefficients κ = 0, 0.1, 0.2 

 

A critical analysis is performed in Figure 10, which examines the interplay between physical 
damping and the delay coefficient (ζ). While positive values of ζ (e.g., 0.5) reinforce the 
damping effect, a negative delay coefficient (e.g., ζ = 	−0.87) counteracts the physical 
damping. This leads to a scenario where the system maintains a certain amplitude or 
approaches instability, despite the presence of physical damping. This capability to predict 
stability boundaries is crucial for the design of active control systems. 

 

 
Figure 10. PIA(1,1) solutions for varying delay coefficients ζ = 0, 0.5, −0.87  

under physical damping κ = 0.2 
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5. Conclusion 
In this study, the PIA(1,1) was successfully extended and applied to solve high-order delay 
differential equations. By integrating the method of steps with a robust continuity enforcement 
procedure based on matrix operations, the algorithm effectively manages the history functions 
and time delays inherent in such systems. 

Numerical validation on a linear benchmark problem demonstrated that the proposed 
PIA(1,1) algorithm outperforms widely used techniques in the literature, such as the VMM 
and the DAM, in both solution accuracy and computational efficiency. The method has shown 
its suitability for computationally intensive engineering problems by achieving high-precision 
results with minimal CPU time. 

Application of the method to the DME provided valuable physical insights into the stability 
of parametrically excited systems. Analysis of the results indicates that the delay term acts as 
an "artificial" damping mechanism; specifically, increasing the positive delay coefficient 
significantly reduces vibration amplitudes, thereby stabilizing the system. Conversely, 
investigations of the DDME revealed that negative delay coefficients act as an energy source 
counteracting physical damping, potentially driving the system towards instability. 
Furthermore, comparative analyses indicated that the PIA algorithm produces results closer 
to the exact numerical solution than the EMHPM, particularly for complex damped systems. 
In conclusion, this study confirms that the proposed PIA(1,1) algorithm is a powerful, reliable, 
and efficient mathematical tool for the dynamic analysis and design of linear and nonlinear 
engineering systems with time delays. 

Despite its accuracy and efficiency for constant-delay problems, the proposed method is 
primarily suited to delay differential equations with fixed delays and moderate nonlinearity. 
For strongly nonlinear or high-dimensional systems, the size of the resulting algebraic systems 
and the computational cost may increase, potentially affecting efficiency. Moreover, 
extensions of the present framework to problems involving state-dependent delays are not 
considered in this study and remain an important direction for future research. 
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