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Abstract

We establish the characterisations of the classes of bounded linear operators from the generalised
Hahn sequence space hd, where d is an unbounded monotone increasing sequence of positive real
numbers, into the spaces [c0], [c] and [c∞] of sequences that are strongly convergent to zero,
strongly convergent and strongly bounded. Furthermore, we prove estimates for the Hausdorff
measure of noncompactness of bounded linear operators from hd into [c], and identities for the
Hausdorff measure of noncompactness of bounded linear operators from hd to [c0], and use these
results to characterise the classes of compact operators from hd to [c] and [c0].
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1. Introduction and Notations

We use the standard notations ω for the set of all complex sequences x = (xk)
∞
k=1, and `∞, c,

c0 and φ for the sets of all bounded, convergent, null and finite sequences, that is, sequences

terminating in zeros. We also write e = (ek)
∞
k=1 and e(n) = (e

(n)
k )∞k=1 (n ∈ N) for the sequences

with ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

We recall that a BK space X is a Banach sequence space with continuous coordinates Pn : X → C
(n ∈ N), where Pn(x) = xn for all x = (xk)

∞
k=1 ∈ X. A BK space X ⊃ φ is said to have AK

if x = limm→∞ x
[m] for all x = (xk)

∞
k=1 ∈ X, where x[m] =

∑m
k=1 xke

(k) denotes the m–section
of the sequence x. It is well known that the sets `∞, c, and c0 are BK spaces with their
natural norms ‖x‖∞ = supk |xk|, c0 has AK, every sequence x = (xk)

∞
k=1 ∈ c has a unique

representation x = ξe+
∑∞

k=1(xk − ξ)e(k), where ξ = limk→∞ xk, and finally, `∞ is not separable
and consequently has no Schauder basis. Let X ⊂ ω. Then the set Xβ = {a ∈ ω :∑∞

k=1 akxk converges for all x ∈ X} is the β–dual of X. Let A = (ank)
∞
n,k=1 be an infinite

matrix of complex numbers, An = (ank)
∞
k=1 and Ak = (ank)

∞
n=1 be the sequences in the nth row

and the kth column of A, and X and Y be subsets of ω. Then we write Anx =
∑∞

k=1 ankxk and
Ax = (Anx)∞n=1 for x = (xk)

∞
k=1 provided all the series converge. The set XA = {x ∈ ω : Ax ∈ X}

is called the matrix domain of A in X, and (X,Y ) denotes the class of all matrix transformations
from X into Y , that is, A ∈ (X,Y ) if and only if X ⊂ YA.

The reader interested in the theory of sequence spaces and matrix transformations is referred to
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the monographs Boos (2000); de Malafosse et al. (2021); Kamthan and Gupta (1981); Malkowsky
and Rakočević (2019); Ruckle (1981); Wilansky (1984); Zeller and Beekmann (1968).

If X and Y are Banach spaces, we use the standard notation B(X,Y ) for the Banach space of all
bounded linear operators L : X → Y with the operator norm ‖L‖ = sup{|L(x)| : ‖x‖ = 1}; the
space X∗ = B(X,C) is called the continuous dual of X; its norm is ‖f‖ = sup{|f(x)| : ‖x‖ = 1}
for all f ∈ X∗. Also K(X,Y ) denotes the class of all compact operators in B(X,Y ).

The following well–known result gives the relation between (X,Y ) and B(X,Y ).

Proposition 1.1 Let X and Y be BK spaces.

(a) If A ∈ (X,Y ), then LA ∈ B(X,Y ), where LA(x) = Ax for all x ∈ X, that is, matrix maps
between BK spaces are continuous (Wilansky, 1984, Theorem 4.2.8).

(b) If X has AK, then every operator L ∈ B(X,Y ) can be represented by a matrix A ∈ (X,Y )
such that

Ax = L(x) for all x ∈ X (Jarrah and Malkowsky, 2003, Theorem 1.9). (1.1)

The operator ∆ : ω → ω of the so–called forward differences is defined by ∆xk = xk − xk+1

(k = 1, 2, . . . ). The set h = {x ∈ ω :
∑∞

k=1 k|∆xk| < ∞} ∩ c0 was defined by Hahn in 1922 (see
Hahn (1922)) in connection with the theory of singular integrals; Hahn showed that h is a BK
space with ‖x‖′ =

∑∞
k=1 k|∆xk|+ supk |xk| for all x = (xk)

∞
k=1 ∈ h. Rao (1990) showed that the

Hahn space is a BK space with AK with the norm ‖x‖ =
∑∞

k=1 k|∆xk| for all x = (xk)
∞
k=1 ∈ h.

Goes (1972) introduced and studied the generalised Hahn space hd for arbitrary complex sequences
d = (dk)

∞
k=1 with dk 6= 0 for all k by hd = {x ∈ ω :

∑∞
k=1 |dk| · |∆xk| <∞} ∩ c0 with the norm

‖x‖d =
∞∑
k=1

|dk| · |∆xk| for all x = (xk)
∞
k=1 ∈ hd. (1.2)

The following result is known.

Proposition 1.2 Let d be a increasing unbounded sequence of positive reals.

(a) Then hd with the norm in (1.2) is a BK space with AK (Malkowsky et al., 2021, Proposition
2.1).

(b) We write

bsd =

{
a ∈ ω : sup

n

1

dn

∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣
}

and ‖a‖bsd = sup
n

1

dn

∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣ for all a ∈ bsd.

Then hβd = bsd and hβd and h∗d are norm isomorphic (Malkowsky et al., 2021, Proposition 2.3).

Recent research on the Hahn space and its generalisations can be found, for instance, in Das
(2017); Kirişci (2013a); Raj and Kiliçman (2014); Rao and Srinivasalu (1996); Rao and Subra-
manian (2002) and the survey paper Kirişci (2013b).

Throughout, we use the convention that every term with a subscript ≤ 0 is equal to zero. The
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sets

[c0] =

{
x ∈ ω : lim

n→∞

1

n

n∑
k=1

|kxk − (k − 1)xk−1| = 0

}
,

[c] = [c0]⊕ e = {x ∈ ω : x− ξe ∈ [c0] for some ξ ∈ C} and

[c∞] =

{
x ∈ ω : sup

n

1

n

n∑
k=1

|kxk − (k − 1)xk−1| <∞

}

of sequences that are strongly convergent to zero, strongly convergent and strongly bounded
were first introduced and studied in the papers Borwein (1960), and Kuttner and Thorpe (1979).
Generalizations of these spaces were considered by Mòricz (1989), the research papers Djolović
and Malkowsky (2012, 2013); Jarrah and Malkowsky (2002); Malkowsky (1995, 2000, 2013);
Malkowsky and Nergiz (2015); Malkowsky and Rakočević (1998, 2000), and the survey paper
Malkowsky (2017).

The following result is well–known.

Proposition 1.3 (Malkowsky, 1995, Theorem 2) The sets [c0], [c] and [c∞] are BK spaces with

‖x‖[c∞] = sup
n

1

n

n∑
k=1

|kxk − (k − 1)xk−1|;

[c0] is a closed subspace of [c], and [c] is a closed subspace of [c∞]; [c0] has AK and every sequence
x = (xk)

∞
k=1 ∈ [c] has a representation

x = ξe+
∞∑
k=1

(xk − ξ)e(k), (1.3)

where ξ is the unique complex number such that x− ξe ∈ [c0], the so–called [c]–limit of x.

In this paper, we characterise the classes B(hd, [c0]), B(hd, [c]) and B(hd, [c∞]), when d is a mono-
tone increasing unbounded sequence of positive real numbers. Furthermore, we establish estimates
for the Hausdorff measure of noncompactness of operators in the class B(hd, [c]), and identities
for the Hausdorff measure of noncompactness of operators in the class B(hd, [c0]). Finally, we
characterise the classes K(hd, [c]) and K(hd, [c0]).

2. The Classes B(hd, Y ) for Y ∈ {[c∞], [c], [c0]}
Throughout let d be an unbounded increasing sequence of positive real numbers.

We are going to characterise the classes B(hd, Y ) and compute the operator norm of L ∈ B(hd, Y )
for Y ∈ {[c∞], [c], [c0]}. Since hd is a BK space with AK by Proposition 1.2 (a), and each space
Y is a BK space by Proposition 1.3, each operator L ∈ B(hd, Y ) can be represented by a matrix
A ∈ (hd, Y ) as in (1.1) by Proposition 1.1 (b). We will use this fact and notation throughout the
paper.

We need the following definition and results which we state here for the reader’s convenience.

Definition 2.1 (Wilansky, 1984, Definition 7.4.2) Let X be a BK space. A subset E of the set
φ called a determining set for X if D(X) = B̄X ∩ φ is the absolutely convex hull of E.
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Proposition 2.2 (Wilansky, 1984, Theorem 8.3.4) Let X be a BK space with AK, E be a
determining set for X, and Y be an FK space. Then A ∈ (X,Y ) if and only if:

(i) The columns of A belong to Y , that is, Ak = (ank)
∞
n=1 ∈ Y for all k,

and

(ii) L(E) is a bounded subset of Y ,where L(x) = Ax for all x ∈ X.

Proposition 2.3 (Malkowsky et al., 2021, Proposition 3.2) The set

E =

{
1

dm
· e[m] : m ∈ N

}
(2.1)

is a determinig set for hd.

Theorem 2.4 We have
(a) L ∈ B(hd, [c∞]) if and only if

‖A‖(hd,[c∞]) = sup
l,m

1

ldm

l∑
n=1

∣∣∣∣∣n
m∑
k=1

ank − (n− 1)
m∑
k=1

an−1,k

∣∣∣∣∣ <∞; (2.2)

(b) L ∈ B(hd, [c]) if and only if (2.2) holds and
for each k ∈ N, there exists αk ∈ C such that

lim
l→∞

1
l

l∑
n=1
|nank − (n− 1)an−1,k − αk| = 0;

 (2.3)

(c) L ∈ B(hd, [c0]) if and only if (2.2) holds and

lim
l→∞

1

l

l∑
n=1

|nank − (n− 1)an−1,k| = 0 for each k. (2.4)

(d) If L ∈ B(hd, Y ) for Y ∈ {[c0], [c], [c∞]}, then

‖L‖ = ‖A‖(hd,[c∞]). (2.5)

Proof. (a) Let L ∈ B(hd, [c∞]).
Since the set E in (2.1) is a determining set for hd by Proposition 2.3, we apply Proposition 2.2,
and show that the matrix A that represents L satisfies the conditions in (i) and (ii) of Proposition
2.2.
We write C = (cnm)∞n,m=1 for the matrix with

cnm = n

m∑
k=1

ank for n,m = 1, 2, . . .

and
∆−n cnm = cnm − cn−1,m for n,m = 1, 2, . . . .

Let m ∈ N be given and y(m) = (1/dm)e[m] ∈ E. Then we have

Any
(m) =

∞∑
k=1

anky
(m)
k =

1

dm

m∑
k=1

ank =
1

ndm
cnm for all n,
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hence ∥∥∥Ay(m)
∥∥∥
[c∞]

= sup
l

1

l

l∑
n=1

∣∣∣nAny(m) − (n− 1)An−1y
(m)
∣∣∣

= sup
l

1

ldm

l∑
n=1

∣∣∆−n cnm∣∣ ≤ ‖A‖(hd,[c∞]) <∞.

So (2.2) yields the condition in (ii) of Proposition 2.2.
It remains to show that the condition in (i) of Proposition 2.2 is redundant.
We have

anm = dmAny
(m) − dm−1Any(m−1) =

1

n
(cnm − cn,m−1) for all n and m,

hence

|nanm − (n− 1)an−1,m| = |cnm − cn,m−1 − (cn−1,m − cn−1,m−1| =
∣∣∆−n cnm∣∣+

∣∣∆−n cn,m−1∣∣
and

‖Am‖[c∞] = sup
l

1

l

l∑
n=1

|nanm − (n− 1)an,m−1|

≤ dm sup
l

1

ldm

l∑
n=1

∣∣∆−n cnm∣∣+ dm−1 sup
l

1

ldm−1

l∑
n=1

∣∣∆−n cn,m−1∣∣
≤ 2dm · ‖A‖(hd,[c∞]) <∞ for all m.

This completes the proof of Part (a).
(b) and (c) Since hd is a BK space with AK and [c0] and [c] are closed subspaces of the BK
space [c∞] by Proposition 1.3, Parts (b) and (c) follow by (Wilansky, 1984, Theorem 8.3.6).

(d) Finally we assume that L ∈ B(hd, Y ), where Y ∈ {[c0], [c], [c∞]}. Then An ∈ hβd for all n and

hβd = bsd by Proposition 1.2 (b). We obtain for Anx = Ln(x) (x ∈ hd)

|Anx| ≤
∞∑
k=1

dk|∆xk|
1

dk

∣∣∣∣∣∣
k∑
j=1

anj

∣∣∣∣∣∣ ≤ ‖An‖bsd · ‖x‖hd for all n ∈ N and all x ∈ hd. (2.6)

To prove (2.6), let m ∈ N be given. Then Abel’s summation by parts yields

Ln(x[m]) = Anx
[m] =

m∑
k=1

ankxk =

m−1∑
k=1

∆xk

k∑
j=1

anj + xm

m∑
j=1

anj

=
m−1∑
k=1

dk∆xk
1

dk

k∑
j=1

anj + dmxm
1

dm

m∑
j=1

anj .

Since hd has AK and x ∈ hd, it follows that

0 ≤ |dmxm| =
∞∑
k=m

dk

∣∣∣∆x[m]
k

∣∣∣ ≤ ∞∑
k=1

dk

∣∣∣∆(x
[m]
k − xk)

∣∣∣+

∞∑
k=m

dk |∆xk|

= ‖x[m] − x‖hd +

∞∑
k=m

dk |∆xk| → 0 (m→∞).
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Thus the continuity of Ln yields

|Anx| = |Ln(x)| = lim
m→∞

∣∣∣Ln(x[m])|
∣∣∣ ≤ ∞∑

k=1

dk|∆xk|
1

dk

∣∣∣∣∣∣
k∑
j=1

anj

∣∣∣∣∣∣
≤
∞∑
k=1

dk|∆xk|‖An‖bsd = ‖An‖bsd · ‖x‖hd ,

that is, (2.6).

Now we writeB = (bnk)
∞
n,k=1 for the matrix with the rowsBn = nAn−(n−1)An−1 for n = 1, 2, . . . .

Then we obtain from (2.6) for l = 1, 2, . . .

1

l

l∑
n=1

|nAnx− (n− 1)An−1x| =
1

l

l∑
n=1

|Bnx| ≤
1

l

l∑
n=1

∞∑
m=1

dm|∆xm|
1

dm

∣∣∣∣∣∣
m∑
j=1

bnj

∣∣∣∣∣∣
=

1

l

∞∑
m=1

dm|∆xm|

 1

dm

l∑
n=1

∣∣∣∣∣∣
m∑
j=1

bnj

∣∣∣∣∣∣


≤ 1

l

sup
m

1

dm

l∑
n=1

∣∣∣∣∣∣
m∑
j=1

bnj

∣∣∣∣∣∣
 · ‖x‖hd

≤

sup
l,m

1

ldm

l∑
n=1

∣∣∣∣∣∣
m∑
j=1

(nanj − (n− 1)an−1,j)

∣∣∣∣∣∣
 ‖x‖hd

≤ ‖A‖(hd,[c∞])‖x‖hd .

This implies

‖L‖ = sup
‖x‖hd=1

‖L(x)‖[c∞] = sup
‖x‖hd=1

1

l

l∑
n=1

|nAnx− (n− 1)An−1x| ≤ ‖A‖(hd,[c∞]). (2.7)

To prove the converse inequality, let m ∈ N be given. We put x(m) = (1/dm)e[m]. Then

‖x(m)‖hd =
1

dm

m∑
k=1

dk

∣∣∣∆x(m)
k

∣∣∣ =
dm
dm

= 1

and

‖L(x(m))‖[c∞] = sup
l

1

l

l∑
n=1

∣∣∣nAnx(m) − (n− 1)An−1x
(m)
∣∣∣

= sup
l

1

ldm

l∑
n=1

|cnm − cn−1,m| ≤ ‖L‖.

Since m ∈ N was arbitrary, we have ‖A‖(hd,[c∞]) ≤ ‖L‖.
Finally, this and (2.7) together imply (2.5). �

Now we establish a formula for the [c]–limits of L(x) and x ∈ hd, when L ∈ B(hd, w).
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Theorem 2.5 Let L ∈ B(hd, [c]) and αk for k ∈ N be the complex numbers in (2.3). Then the
[c]–limit η(x) of L(x) for each sequence x ∈ hd is given by

η(x) =

∞∑
k=1

αkxk. (2.8)

Proof. Let L ∈ B(hd, [c]). We write B = (bnk)
∞
n,k=1 for the matrix with the rows Bn =

nAn − (n− 1)An−1 for all n. First we show

(αk)
∞
k=1 ∈ bsd. (2.9)

We have for all l,m ∈ N

1

dm

∣∣∣∣∣
m∑
k=1

αk

∣∣∣∣∣ =
1

dm
· 1

l

l∑
n=1

∣∣∣∣∣
m∑
k=1

αk

∣∣∣∣∣
≤ 1

dm
· 1

l

l∑
n=1

∣∣∣∣∣
m∑
k=1

bnk − αk

∣∣∣∣∣+
1

dm
· 1

l

l∑
n=1

∣∣∣∣∣
m∑
k=1

bnk

∣∣∣∣∣
≤ 1

dm

m∑
k=1

1

l

l∑
n=1

|bnk − αk|+ ‖A‖(hd,[c∞]). (2.10)

Since, for each fixed m, the first term in the last inequality above tends to 0 as l tends to infinity
by (2.3), it follows that

sup
m

1

dm

∣∣∣∣∣
m∑
k=1

αk

∣∣∣∣∣ ≤ ‖A‖(hd,[c∞]) <∞, (2.11)

and so (2.9) is satisfied.

By Proposition 1.2 (b) and (2.9), we have (αk)
∞
k=1 ∈ h

β
d . Also A ∈ (hd, [c]) implies An ∈ hβd for

each n, and consequently Bn− (αk)
∞
k=1 ∈ h

β
d for each n. Now we obtain for all m and l by (2.11)

1

ldm

l∑
n=1

∣∣∣∣∣
m∑
k=1

(bnk − αk)

∣∣∣∣∣ ≤ 1

ldm

l∑
n=1

∣∣∣∣∣
m∑
k=1

bnk

∣∣∣∣∣+
1

ldm

l∑
n=1

∣∣∣∣∣
m∑
k=1

αk

∣∣∣∣∣ ≤ 2‖A‖(hd,[c∞]) <∞,

and so

sup
m,l

1

ldm

l∑
n=1

∣∣∣∣∣
m∑
k=1

nank − (n− 1)ank − αk

∣∣∣∣∣ <∞,
that is, (ank − αk)∞n,k=1 ∈ (hd, [c∞]) by Theorem 2.4 (a). Finally, this and (2.3) imply (ank −
αk)n,k=1 ∈ (hd, [c0]), so the [c]–limit of L(x) for x ∈ hd is given by (2.8). �

3. The Hausdorff Measure of Noncompactness of Operators

In this section, we establish an identity for the Hausdorff measure on noncompactness of opera-
tors in B(hd, [c0]) and an estimate for the Hausdorff measure of noncompactness of operators in
B(hd, [c]). We also characterise the classes K(hd, [c0]) and K(hd, [c]).
We list the necessary, known concepts and results concerning the Hausdorff measure of noncom-
pactness. First we recall the definition of the Hausdorff measure of noncompactness of bounded
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sets in complete metric spaces (Toledano et al., 1997, Definition II.2.1), and the Hausdorff mea-
sure of noncompactness of operators between Banach spaces (Malkowsky and Rakočević, 2019,
Definition 7.11.1). The interested reader is also referred to the research articles Mursaleen and
Noman (2010, 2011).

Let X be a complete metric space and MX be the class of bounded subsets of X. Then the
function χ : MX → [0,∞) with χ(Q) = inf{ε > 0 : Q has a finite ε–net in X} is called the
Hausdorff measure of noncompactness on X.

Let χ1 and χ2 be Hausdorff measures of noncompactness on the Banach spaces X and Y , repec-
tively. Then an operator L : X → Y is said to be (χ1, χ2)–bounded, if L(Q) ∈ MY for all
Q ∈MX and there exists a non–negative real number c such that

χ2(L(Q)) ≤ c · χ1(Q) for all Q ∈MX . (3.1)

If an operator L is (χ1, χ2)–bounded, the the number

‖L‖(χ1,χ2) = inf{c ≥ 0 : (3.1) is satisfied}

is called the (χ1, χ2)–measure of noncompactness of the operator L. If χ1 = χ2, we write ‖L‖χ =
‖L‖(χ,χ), for short, and refer to ‖L‖χ as the Hausdorff measure of noncompactness of the operator
L.

We need the following known results.

Theorem 3.1 (Goldenštein, Gohberg, Markus) (Malkowsky and Rakočević, 2000, Theo-
rem 2.23) Let X be a Banach space with a Schauder basis (bn), Rn : X → X for each n be
defined by

Rn(x) =

∞∑
k=n+1

λkbk for all x =

∞∑
k=1

λkbk ∈ X,

and µ :MX →MX be the function with

µ(Q) = lim sup
n→∞

(
sup
x∈Q
‖Rn(x)‖

)
.

Then
1

a
· µ(Q) ≤ χ(Q) ≤ inf

n

(
sup
x∈Q
‖Rn(x)‖

)
≤ µ(Q) for all x ∈MX , (3.2)

where a = lim supn→∞ ‖Rn‖ is the basis constant of the Schauder basis.

Proposition 3.2 Let X and Y be Banach spaces and L ∈ B(X,Y ) and SX denote the unit
sphere in X. Then we have

‖L‖χ = χ(L(SX)) (Malkowsky and Rakočević, 2019, Theorem 7.11.4) (3.3)

and L ∈ K(X,Y ) if and only if

‖L‖χ = 0 (Malkowsky and Rakočević, 2019, Theorem 7.11.5). (3.4)

We obtain the follwoing results for the Hausdorff measure of noncompactness of bounded sets in
[c0] and [c].

8
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Corollary 3.3 We have
χ(Q) = µ(Q) for all Q ∈M[c0] (3.5)

and
1

2
· µ(Q) ≤ χ(Q) ≤ µ(Q) for all Q ∈M[c]. (3.6)

Proof. We show a = 1 for Rn : [c0] → [c0] and a ≤ 2 for Rn : [c] → [c]. Then (3.5) and (3.6)
follow from (3.2).

We have x =
∑∞

k=1 xke
(k) for all x = (xk)

∞
k=1 ∈ [c0] by Proposition 1.3, hence for each m ∈ N

‖Rm(x)‖[c∞] = sup
n≥m+1

1

n

n∑
k=m+1

|kxk − (k − 1)xk−1|

= sup
n≥m+1

1

n

(
(m+ 1)|xm+1|+

n∑
k=m+2

|kxk − (k − 1)xk−1|

)

= sup
n≥m+1

1

n

(∣∣∣∣∣
m+1∑
k=1

(kxk − (k − 1)xk−1)

∣∣∣∣∣+

n∑
k=m+2

|kxk − (k − 1)xk−1|

)

≤ sup
n≥1

1

n

n∑
k=1

|kxk − (k − 1)xk−1| = ‖x‖[c∞],

hence
‖Rm(x)‖[c∞] ≤ ‖x‖[c∞]. (3.7)

This implies ‖Rm‖ ≤ 1 for all m. Since Rm is a projector, we also have ‖Rm‖ ≥ 1 for all m.
Thus we have shown a = 1.

By (1.3), every sequence x = (xk)
∞
k=1 ∈ [c] has a unique representation

x = ξe+
∞∑
k=1

(xk − ξ)e(k),

where ξ is the [c]–limit of the sequence x. Now we have

‖Rm(x)‖[c∞] = sup
n≥m

1

n

(
|(m+ 1)(xm+1 − ξ)|+

n∑
k=m+2

|k(xk − ξ)− (k − 1)(xk − ξ)|

)

≤ sup
n≥m

1

n
(|((m+ 1)− (n− (m+ 1)))ξ|+ |(m+ 1)xm+1|

+
n∑

k=m+2

|kxk − (k − 1)xk−1|

)

≤ |ξ|+ sup
n≥1

1

n

n∑
k=1

|kxk − (k − 1)xk−1|

and (3.7) yields
‖Rm‖[c∞] ≤ |ξ|+ ‖x‖[c∞]. (3.8)

We also obtain for all n

|ξ| = 1

n

n∑
k=1

|ξ| ≤ 1

n

n∑
k=1

|kxk − (k − 1)xk−1 − ξ|+
1

n

n∑
k=1

|kxk − (k − 1)xk−1|

9
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≤ 1

n

n∑
k=1

|kxk − (k − 1)xk−1 − ξ|+ ‖x‖[c∞].

Since ξ is the [c]–limit of the sequence x, the first term in the last inequality tends to 0 as n tends
to ∞, and so |ξ| ≤ ‖x‖[c∞]. Now (3.8) yields ‖Rm(x)‖[c∞] ≤ 2‖x‖[c∞] for all m, hence a ≤ 2. �

Now we prove an estimate for ‖L‖χ, if L ∈ B(hd, [c]), and an identity for ‖L‖χ, if L ∈ B(hd, [c0]).

Theorem 3.4 (a) Let L ∈ B(hd, [c]). Then we have

1

2
· lim
r→∞

(
sup
m;l≥r

1

ldm

l∑
n=r

∣∣∣∣∣
m∑
k=1

(nank − (n− 1)an−1,k − αk)

∣∣∣∣∣
)
≤ ‖L‖χ

≤ lim
r→∞

(
sup
m;l≥r

1

ldm

l∑
n=r

∣∣∣∣∣
m∑
k=1

(nank − (n− 1)an−1,k − αk)

∣∣∣∣∣
)
, (3.9)

where the complex numbers αk are defined in (2.3).
(b) Let L ∈ B(hd, [c0]). Then we have

‖L‖χ = lim
r→∞

(
sup
m;l≥r

1

ldm

l∑
n=r

∣∣∣∣∣
m∑
k=1

(nank − (n− 1)an−1,k

∣∣∣∣∣
)
. (3.10)

Proof. Let A = (ank)
∞
n,k=1 be any infinite matrix and r ∈ N. We write A<r> = (a<r>nk )∞n,k=1 for

the matrix with the rows A<r>n = 0 for 1 ≤ n ≤ r and A<r>n = An for n ≥ r + 1.
(a) Let L ∈ (hd, [c]) and A = (ank)

∞
n,k=1 be the matrix that represents L.

First we show that the limits in (3.9) exist.

Let x ∈ hd be given. We write yn = Anx = Ln(x) for n = 1, 2, . . . , η(x) for the [c]–limit of the
sequence y = (yn)∞n=1 and µr(x) = ‖Rr(x)‖[c∞] for all r. Then we have for all r

µr(y) = ‖Rr(y)‖[c∞] = sup
m≥r+1

1

m

m∑
n=r+1

|nyn − (n+ 1)yn−1 − η(x)|

≥ sup
m≥r+2

1

m

m∑
n=r+2

|nyn − (n+ 1)yn−1 − η(x)| = ‖Rr+1(y)‖[c∞] = µr+1(y),

hence supx∈Q µr(y) ≥ supx∈Q µr+1(y) ≥ 0 for all r and for all Q ∈Mhd . Consequently

µ(Q) = lim
r→∞

µr(Q) exists for all Q ∈Mhd .

Now we define the matrix B = (bnk)
∞
n,k=1 by bnk = ank − αk for all n and k, and denote the

unit sphere in hd by Shd . Since η(x) =
∑∞

k=1 αkxk for all x ∈ hd by (2.8), it follows that
(Rr ◦ L)(x) = B<r>x for all x ∈ hd, and so by (2.2) and (2.5)

sup
x∈Shd

‖Rr ◦ L)(x)‖[c∞] = ‖B<r>‖(hd,[c∞])

= sup
l,m

1

ldm

l∑
n=1

∣∣∣∣∣n
m∑
k=1

b<r>nk − (n− 1)

m∑
k=1

bn−1,k

∣∣∣∣∣
= sup

m;l≥r+1

1

ldm

l∑
n=r+1

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k − αk

∣∣∣∣∣ .
10
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Finally we get (3.9) by (3.6) and by (3.3).

(b) The proof is similar to that of Part (a) with αk = 0 for all k and (3.5) instead of (3.6). �

Finally the characterisations of the classes K(hd, [c]) and K(hd, [c0]) are immediate conse-
quences of (3.4) and Theorem 3.4.

Corollary 3.5 (a) Let L ∈ B(hd, [c]). Then L ∈ K(hd, [c]) if and only if

lim
r→∞

(
sup
m;l≥r

1

ldm

l∑
n=r

∣∣∣∣∣
m∑
k=1

(nank − (n− 1)an−1,k − αk)

∣∣∣∣∣
)

= 0,

where the complex numbers αk are defined in (2.3).

(b) Let L ∈ B(hd, [c0]). Then L ∈ K(hd, [c0]) if and only if

lim
r→∞

(
sup
m;l≥r

1

ldm

l∑
n=r

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣
)

= 0.

We close with an application of our results.

Example 3.6 We consider the Hahn space h = hd, where dk = k for all k = 1, 2, . . . and the
Cesàro matrix C1 = A = (ank)

∞
n,k=1 of order 1, where ank = 1/n for 1 ≤ k ≤ n and ank = 0 for

k > n (n = 1, 2, . . . ). Then LC1 ∈ K(h, [c0]) and ‖LC1‖ = 1.

Proof. We write

σlm =
m∑
n=1

∣∣∣∣∣
n∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣ ,
τlm =

l∑
n=m+1

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣
and

slm =
1

lm

l∑
n=1

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣ for all l and m.

Then slm = (1/lm)(σlm + τlm) for all m and l.

We obtain

σlm =

m∑
n=1

∣∣∣∣∣
n∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣ = m,

and

τlm =


0 (l ≤ m)

l∑
n=m+1

∣∣∣∣ m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣ = 0 (l ≥ m+ 1),

11
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hence slm = (1/l) for all l and m. So suplm slm = 1, that is, LC1 ∈ B(hd, [c∞]) and ‖LC1‖ = 1 by
Theorem 2.4 (a) and (d). Also, for each fixed k,

0 ≤ 1

l

l∑
n=1

|nank − (n− 1)an−1,k| =
1

l

l∑
n=k

|nank − (n− 1)an−1,k|)
1

l
→ 0 (l→∞),

and this and LC1 ∈ B(hd, [c∞]) togther imply LC1 ∈ B(hd, [c0]) by Theorem 2.4 (c).

Finally, we write for all l ≥ r, m and r

s
(r)
lm =

1

lm

l∑
n=r

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣
=

1

lm

(
m∑
n=r

∣∣∣∣∣
n∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣+
l∑

n=m+1

∣∣∣∣∣
m∑
k=1

nank − (n− 1)an−1,k

∣∣∣∣∣
)

=
1

lm
(m− r + 1) ≤ 1

l
,

hence

sup
m;l≥r

s
(r)
lm ≤

1

r
,

and so
lim
r→∞

sup
m;l≥r

s
(r)
lm = 0.

Consequently we have LC1 ∈ K(h, [c0]) by Corollary 3.5 (b). �

4. Conclusion

The paper adds new results in recent research concerning the studies of bounded linear and
compact operators between BK spaces. In particular, the main results are Theorems 2.4, 2.5,
3.4 and Corollary 3.5. Theorem 2.4 establishes the characterisations of the classes B(hd, Y ) for
Y ∈ {[c]0, [c], [c]∞} by necessary and sufficient conditions on the entries of the infinite matrices A
that represent these operators; furthermore it contains a formula for the corresponding operator
norms. Theorem 2.5 gives a formula for the [c]–limit of L(x), when L ∈ B(hd, [c]). Theorem 3.4
establishes an identity and an estimate for the Hausdorff measures ‖L‖χ of L ∈ B(hd, [c]0) and
L ∈ B(hd, [c]), respectively, in terms of the entries of the infinite matrices A that represent L.
Corollary 3.5 yields the characterisations of the compact operators in the classes B(hd, [c]0) and
L ∈ B(hd, [c]). Finally, the results of the paper are applied in Example 3.5 to obtain that the
operator C1 : hd → [c]0 of the aritmetic means is compact.

Suggestions for further research would be the characterisations of the dual classes (Y, hd) for
Y ∈ {[c]0, [c], [c]∞}, and their subclasses of compact matrix operators, and possible extensions
of the results, when Y is generalised to Yp ∈ {[c]p0, [c]p, [c]

p
∞} (1 ≤ p < ∞); here the spaces Yp

obtained by replacing the modulus | · | in the definition the sets in Y by | · |p.
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Malkowsky, E., Rakočević, V., and Tuǧ, O. (2021). Compact operators on the Hahn space.
Monatsh. Math., pages https://doi.org/10.1007/s00605–021–01588–8.
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