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Abstract 

Free vibration of a single degree of freedom system is a fundamental topic in mechanical 
vibrations. The present study introduces a novel and simple numerical method for the solution 
of this system in terms of Lucas polynomials in the matrix form. Particular and general 
solutions of the differential equation can be determined by this method. The method is 
illustrated by a numerical application and the results obtained are compared with those of the 
exact solution. 

Keywords: Vibration Spring-mass-damper system, Lucas polynomials and series, collocation 
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1. Introduction  

Ordinary differential equations, a crucial part of applied mathe- matics, have many 
applications in different science and engineering disciplines. The study of the free vibration of 
damped spring-mass systems having single degree of freedom is fundamental to the 
understanding of advanced subjects in mechanical vibrations. In many cases, a complicated 
system can be idealized as a single degree of freedom spring-mass system. Therefore, solving 
the equations of motion of this system would serve for many other more advanced problems. 
There are various useful methods for calculating solutions of a spring-mass-damper system 
excited by a harmonic force. Kurt and Çevik ( 2008) and  Savaşaneril (2018) proposed a matrix 
method  for solving this problem. 

The present study introduces a novel and simple method in terms of Lucas polynomials in the 
matrix form. Lucas polynomials have been used by many researchers for the solution of 
differential and integral equations. Gümgüm et al. (2018) proposed a Lucas expansion 
approach for functional integro-differential equations involving variable delays. Baykus 
(2017) used this method to find the approximate solution of high-order pantograph type delay 
differential equations with variables delays. Gümgüm et al. (2020) gave an approach for 
Second Order Nonlinear Differential Equations via Lucas polinomial. The method has also 
been used to solve nonlinear equations by Gümgüm et al. ( 2019). Yüzbaşı and Yıldırım (2020) 
proposed Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integro-
differential equations. In addition, Kübra et al. (2021) , Yüzbaşı and Ismailov (2018), Kürkçü 
and Sezer (2022) proposed a different the matrix method. 

In general, an mth order differential equation can be written as: 
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where Pk(t) are analytic functions defined on a≤t≤b, and aik, λi are suitable constants. In the 
present method, the solution of Eq. (1) is expressed in the Lucas polynomial form as: 

( ) ( ) ( ),
N

N n n

n 0

x t x t a L t


   (3) 

where Ln(t) are the Lucas polynomials and an, n=0,1,2,…N are unknown coefficients (Baykus, 
N., 2017). 

2. Fundamental Matrix  Relations 

In this section, we constitute the matrix forms of the unknown function x(t) defined by Eq. (3) 
and the derivative x(k)(t) in Eq. (1). We can first write the truncated Lucas series (3) in the matrix 
form, for n=0,1,2,….N: 

( ) ( ) ( ) ,Nx t x t t L A  (4) 

where 

 ( ) ( ) ( ) ( ) 0 1 Nt L t L t L tL
,    

T

0 1 Na a aA
 (5) 
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0
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n 1 n n 1

L t 2
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Then, by using the Lucas polynomials Ln(t) given by Eq. (6), we write the matrix form L(t) as 
follows:  

( ) ( ) ,t tL T M  (7) 

where  

.N1 t t   T  (8) 

 

If N is odd, 
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If N is even, 
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By the matrix relations in Eq. (4) and Eq. (7), it follows that, 

( ) ( ) .Nx t tT MA  (11) 
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Besides, it is well known from Gümgüm et al. ( 2019) that the relation between T(t) and its 
derivative T(k)(t) is of the form:  

( ) ( ) ( ) ,k kt tT T B  (12) 

where 

 
 
 
 
 
 
  

0 1 0 0

0 0 2 0

0 0 0 N

0 0 0 0

B

                                                                                                                     (13) 

 

and 0
B  is a unit matrix.  

 

By using Eq. (11) and Eq. (12), we have the matrix relation: 

( ) ( ) ( ) , , ,...,k k
Nx t t k 0 1 m T B M A . (14) 

Inserting the collocation points 

, , ,...,i

b a
x a i i 0 1 N

N


    (15) 

into Eq. (1) gives  
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m

k
k i i

k 0

P x t f t

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which can be written in matrix form as: 

( ) , , , ,..., .
m

k
pq k

k 0

w P t p q 0 1 N

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Now, by the relation Eq. (14), we can obtain the condition matrix form for the initial conditions 
(Eq. (2)) UiA=λ or 

 ; , , ,...,i i i 0 1 m 1  U

 (17)

 

such that  

 ( ) .
m 1

k
i ik i0 i1 iN

k 0

a T a u u u




 U B M

 (18) 

 

In order to determine the particular solution of the problem in matrix form, Eq. (17) is written 
briefly in the form: 

WX F  or  ; ,W F  (19) 



 

5 

Savaşaneril  Scientific Research Communications, vol. 3(1), 2023 

where 

( ) , , , ,..., .
m

k
pq k
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w P t p q 0 1 N


     W T B M

 (20) 

By consequence, 

,1X W F  (21) 

 

which yields the desired Lucas cofficients xn, n=0,1,2,…,N of the particular solution. 

Now, to solve the problem, the following augmented matrix is constructed by replacing the 
last 2 rows of [W ; F] of Eq. (22) by the 2-row matrix [Ui ; λi]: 
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3. Lucas Matrix – Collocation Technique of The Problem 

In this study, the viscously damped single degree of freedom system subjected to harmonic 
excitation (Inman, 2001): 

cos ,0M x C x Kx F wt    (23) 

with initial conditions 

( )

( )

0

1

x 0

x 0







  (24) 

will be solved by Lucas matrix method. In this case, we have m=2 and the constants P2=M, 
P1=C, P0=K in Eq. (1): 

( ) .
2

k
k

k 0

M x C x Kx P t


   T B M X  (25) 

3.1. Particular solution 

In order to determine the particular solution of the problem in matrix form, Eq. (23) is written 
briefly in the form: 

( ) , , , ,..., .
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k
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k 0

w P t p q 0 1 N
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By consequence, 

,1X W F  (27) 

which yields the desired Lucas cofficients xn, n=0,1,2,…,N of the particular solution. 

3.2. General solution 

To determine the general solution, the matrix form of the boundary conditions (21) is written 
as: 

 ( ) ,
1

k
i ik i0 i1 iN

k 0

a T a u u u i 0 1


  U B M                                                                             (28) 

Now, to solve the problem, the following augmented matrix is constructed by replacing the 
last 2 rows of [W ;  F] of Eq. (26) by the 2-row matrix [Ui ; λi]: 

  

00 01 0 0

10 11 1 1

2,0 2,1 2, 2
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;

;

;
; .

;
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;
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 
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 
  
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In Eq. (25), if 𝑟𝑎𝑛𝑘�̃� = 𝑟𝑎𝑛𝑘[�̃�; �̃�] = 𝑁 + 1, then the coefficient matrix A is uniquely 

determined and so the solution of the problem Eq. (1)-(2) is obtained as: 

( ) ( )Nx t tL Aor ( ) ( ) .Nx t tT MA                                                                                                     (30)  

4. Numerical Example 

A spring-mass-damper system with a mass of M = 10 kg, damping coefficient of C = 20 kg/s 
and spring stiffness of K = 4000 N/m subject to an excitation force of amplitude F0=100N and 
frequency ω=10 rad/s is considered with initial conditions 𝑥(0) = 0.01, �̇�(0) = 0. The matrix 
operations in this section are performed by using Wolfram Mathematica 13.0. 

The exact solution is given by (Inman, D.J., 2001): 


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 
  

    

for forced response. From the (11) fundamental matrix equation is: 

210 ( ). 20 ( ). 4000 ( ) 100cos10 .T T Tt t t t  T B M A T BM A T M A  (31) 
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By using (15) the collocation points for N = 5 is calculated as: 

1 2 3 4
0, , , , ,1 ,

5 5 5 5

 
 
 

 

 

and we obtain: 

 

8000 20 8020 60 8080 100

8000 820 8188 2506.4 8763.84 4335.04

8000 1620 8676 5149.6 10830.7 9604.32
.

8000 2420 9484 8181.6 14514.9 17075.2

8000 3220 10612 11794.4 20204.2 28226.1

8000 4020 12060 16180 28440 45000

 
 
 
 

  
 
 
 
  

W  

 

The augmented matrix for this fundamental matrix equation is calculated as: 

 

8000 20 8020 60 8080 100 ; 100

8000 820 8188 2506.4 8763.84 4335.04 ; 28.3662

8000 1620 8676 5149.6 10830.7 9604.32 ; 65.3644
; .

8000 2420 9484 8181.6 14514.9 17075.2 ; 96.017

2 0 2 0 2 0 ; 0.01

0 1 0 3 0 5 ; 0

 
 
 
 

     
 
 
 
  

W G  

 

Performing the necessary matrix operations, the particular solution is determined as: 

p 1 2 3 4 5x (t) 184063 160037L (t) 123718L (t) 88047.9L (t) 31679L (t) 20838L (t)     
 

in Lucas polynomial form, and the general solution is: 

g 1 2 3 4 5x (t) 323.256 313.714L (t) 216.497L (t) 168.799L (t) 54.8743L (t) 38.5364L (t)     
 

 

 

Figure 1. The general solution 
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Finally x40(t) is obtained for N=40:  

7 8 7
40 1 2

8 8 8
3 4 5

7
6

x (t) 5.894703961761931.10 4.809657176756848.10 .L (t) 7.467470466915241.10 .L (t)

4.293391442061826.10 .L (t) 8.93847819837741.10 .L (t) 3.132395109718503.10 .L (t)

6.567014129734314.10 .L (t) 1.5

   

   

 8 7
7 8

7
9 10 11

7
12 13

9204644360381.10 .L (t) 2.54515240071604.10 .L (t)

3.495715330499887.L (t) 6614643.904937126.L (t) 1.748782280616832.10 .L (t)

7920874.169940725.L (t) 1.725364834634807.10 .L (t) 9165009.245850491



  

   14

15 16 17

18 19 20

21

.L (t)

5109995.376942811.L (t) 5203828.325874632.L (t) 220814.41721369085.L (t)

1459939.562524835.L (t) 569693.2886912221.L (t) 112126.0439566288.L (t)

167623.56494754046.L (t) 43435.5689862725

 

  

  22 23

24 25 26

27 28 29

8.L (t) 17906.61385994068.L (t)

10833.4183322996338..L (t) 3193.338078951663.L (t) 25413.043724168358.L (t)

1638.6461992483767.L (t) 10040.921604866502.L (t) 1137.8678286578668.L (t)

1236.98420



  

  

30 31 32

33 34 35

36 37

49196193.L (t) 3300786570862636.L (t) 174.6007432535557.L (t)

65.0753966189064.L (t) 35.56471110532434.L (t) 26.896999946160374.L (t)

7.621730624316185.L (t) 3.0780533665079806.L (t) 6.46482532

 

  

  38

39 40

75926315.L (t)

3.293481976937444.L (t) 0.4951794203008488.L (t) 

 

 

The results for different values of N are compared in Table 1. In the table, it is obviously seen 
that the Lucas solution approaches the exact solution as the truncation limit N is increased. 

 

Table 1. Convergence of the Lucas results to those of exact solution 

 Exact Present Method (N =5) Present Method (N =30) Present Method (N = 40) 

t x(t) x5(t) x30(t) x40 (t) 

0 0.010000000102 0.010000000000033538 0.0099998963996768 0.010000037786085159 

0.1 0.026606378588454577 

 

0.021218558662097035 0.026608246698293588 0.02660616339402371 

02 0.002080749042409633 

 

0.014399161349069003 0.00207760236634558 0.0020807331586712163 

0.3 −0.04851575510425815 

 

−0.01401641114458152 −0.04851778585172134 −0.048516383083797576 

0.4 −0.022765129712940937 

 

−0.02837548614445584 −0.022765300714933545 −0.02276530628618173 

0.5 0.019920584607770103 

 

−0.00005820215181184807 0.01991818146927926 0.019921048858392965 

0.6 0.021295471543613383 

 

0.04627878810085573 0.021294628886607825 0.0212938860227041 

0.7 0.023585587433570195 

 

−0.013541385405768658 0.023586714873090386 0.023585824521433096 

0.8 0.007669134885655218 

 

−0.4494595130334105 0.007668879581615329 0.0076684916857630014 

0.9 −0.03468236386751298 

 

−1.723424008541791 −0.034679219126701355 −0.034682015888392925 

1 −0.033476404064609305 

 

−4.535634612144179 −0.03263649344444275 −0.03311382979154587 
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As N increased, better results were obtained. The efficiency and validity of the method are 
obvious. 

5. Conclusions 

A Lucas polynomial matrix solution has been presented for the periodic motion of an 
underdamped single degree of freedom spring-mass system subjected to harmonic excitation. 
Both particular and general solutions of the differential equation can be determined by this 
method. The results show a very good agreement with the method of undetermined 
coefficients (exact solution). The solution can also be applied to higher order systems with the 
same simplicity and application of the method to these problems offers a considerable facility. 
The method is applicable to any function that can be expanded to Lucas series. Accurate results 
can be obtained with rather low values of the truncation limit N; however, in order to have a 
better approximation, the truncation limit should be increased. 
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