

44

Sci. Res. Comm. (2024)

Volume 4, Issue 1

doi: 10.52460/src.2024.005

-

Research Article

An Efficient Index-Based Algorithm for Exact Subgraph Isomorphism
on Bipartite Graphs

Mehmet Burak Koca1,* , Fatih Erdoğan Sevilgen2

1 Department of Computer Engineering, Gebze Technical University, Kocaeli, Türkiye
2 Institute for Data Science and Artificial Intelligence, Boğaziçi University, İstanbul, Türkiye

* Corresponding author: b.koca@gtu.edu.tr

Received: 16.12.2023 Accepted: 13.01.2024

Abstract

Graphs are widely used to represent various real-world networks, but their non-linear nature
and size increase pose challenges for efficient analysis. The subgraph isomorphism problem,
which involves identifying subgraphs that are isomorphic to a query graph, plays a crucial
role in diverse domains. In this paper, we focus on the exact subgraph isomorphism problem
in bipartite graphs and propose a novel index-based solution algorithm. Our algorithm
leverages triplet structures for graph embedding and uses a multi-level hash map for efficient
filtering. We also introduce an optimized solution building process. Experimental results on
real-world datasets demonstrate the performance superiority of our algorithm compared to
state-of-the-art algorithms, with 2 to 500 times shorter querying times. Our findings suggest
that our algorithm is a powerful and efficient solution for exact subgraph isomorphism in
bipartite graphs.

Keywords: Subgraph isomorphism; bipartite graphs; index-based

1. Introduction

Graphs serve as essential data structures for modeling various real-world networks such as
roadmaps, social networks, protein interactions, and chemical compound structures. The
examination of these graph structures plays a pivotal role in understanding the inherent
relationships and substructures they encapsulate. Nevertheless, conducting an efficient
analysis of these graphs presents formidable challenges, particularly given their non-linear
topology and the ongoing growth in dataset sizes.

The subgraph isomorphism (SI) problem is a fundamental technique in graph analysis, widely
used in various scientific fields. It involves identifying subgraphs within a target graph that
match a specified query graph (Corneil and Gotlieb, 1970). This challenge is common in
diverse domains such as protein interaction networks and communication networks,
prompting significant efforts to accurately detect these isomorphic structures. However, the
SI problem is known for its high complexity, making it challenging to find practical solutions.

Subgraph isomorphism is an NP-complete problem because it is an extension of the maximal
clique issue and the challenge of determining whether a graph has a Hamiltonian cycle (Cook,
2023). A Hamiltonian cycle is a cycle that visits each vertex exactly once. In the context of the
subgraph isomorphism problem, we are looking for a specific pattern of vertices and edges

https://orcid.org/0000-0003-4941-6309
https://orcid.org/0000-0001-8004-6700

45

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Figure 1. Target graph G, query graph P, exactly isomorphic H1 and approximately

isomorphic H2 subgraphs of G

within a larger graph that matches the structure of a smaller graph, essentially seeking a
subgraph that follows the connectivity pattern of a Hamiltonian cycle. This connection
highlights the complexity and generality of the subgraph isomorphism problem.

Moreover, enumerating all isomorphic subgraphs adds an extra layer of difficulty, proving to
be more challenging than addressing a singular decision variant (Afrati et al., 2013). Therefore,
heuristic algorithms emerge as the main approach for tackling the SI problem.

Two distinct types of subgraph isomorphism problem exist: (I) Exact subgraph isomorphism
(Carletti et al., 2015; Ullmann, 1976) and (II) Approximate subgraph isomorphi
(Peng et al. 2017). Solutions for the approximate SI problem accommodate for slight variances
in vertices, edges, and other semantic properties such as vertex labels, providing an
approximate solution. The challenge with exact SI problem, however, rests on finding
subgraphs that align flawlessly with the query graph. For example, in Figure 1, subgraph 𝐻1of
𝐺 is exactly isomorphic to the query graph 𝑃. This isomorphism is achieved by establishing
such a mapping between vertices: 𝑃1 → 𝑣1, 𝑃2 → 𝑣2, 𝑃3 → 𝑣3, 𝑃4 → 𝑣4, 𝑃5 → 𝑣5, 𝑃6 → 𝑣6. All the
edges between any two query vertices, such as 𝑒 = (𝑃1, 𝑃2), exists between their corresponding
mappings 𝑒′ = (𝑣1, 𝑣2). On the other hand, subgraph 𝐻2 requires the presence of an edge
(𝑣7, 𝑣8) to be isomorphic to the query graph 𝑃. However, 𝐻2 may be considered as a valid
solution while doing approximate querying if the algorithm tolerates a single missing edge.

Solution strategies for the exact SI problem fall into two primary categories: (I) Index-based
algorithms and (II) Constraint-based algorithms. In constraint-based algorithms
(Cordella et al., 2004; Han, Lee, & Lee, 2013; He and Singh, 2008; Shang et al. 2008;
Ullmann, 1976), an initial vertex is recursively extended through the addition of relevant
neighbor vertices. This process when suitable vertices for branching are exhausted of the
complete isomorphic subgraph is found. On the other hand, index-based algorithms

46

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Figure 2. Target Graph G, Query Graph P, isomorphic subgraphs H1, H2 and non-isomorphic

subgraph H3

(Bonnici et al., 2010; Cheng et al., 2007; Kim et al., 2023) serve to improve the efficiency when
dealing with large and dense graphs through a divide and filter approach. These algorithms
manipulate sub regions of the query graph correlating to sub regions of the target graph. The
idea behind the index-based algorithms include embedding the target graph into sub regions,
filtering required embeddings through the query graph, and building partial solutions.

Despite these efforts, data sources' rapid expansion places immense demands on these
algorithms for efficiency and resourcefulness, especially in maintaining efficiency across all
graph types in SI problems. There are such algorithms (Peng et al., 2015) resort to hardware
technologies and parallel programming in handling large graphs. However, this approach has
its limitations, especially when financial resources limit the tasks performed and thus not a
practical solution to the problem. By tailoring the solutions to a given graph type, performance
can be substantially enhanced (Koca and Sevilgen, 2019).

Bipartite graphs prove its significance in modeling related networks like pathogen-host
protein-protein relation networks or customer-product recommendation networks. Thus, an
efficient solution to the SI problem on bipartite graphs is critical for revealing latent biological
or social patterns in wide scale graphs, often encompassing tens of thousands of vertices.

In this study a novel index-based solution algorithm is proposed for the exact subgraph
isomorphism problem on bipartite graphs. The algorithm consists of three primary steps
consistent with index-based approaches: Firstly, embedding the target graph G using 𝑃3
(triplet) structures and storing them in a hash-map. Secondly, embedding the query graph P
and filtering the hash-map to identify suitable candidate embeddings for P. Finally, joining
the candidate triplets to generate the exact solutions.

The proposed algorithm's performance is compared against existing state-of-the-art
algorithms based on the execution times. Our algorithm achieved 2 to 500 times shorter
querying times than its competitors. These results demonstrate that our algorithm

47

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

outperforms state-of-the-art algorithms developed for general graphs in solving the exact
subgraph isomorphism problem on bipartite graphs.

Figure 3. Target bipartite graph G, query bipartite graph P, the subgraphs that bipartite

isomorphic to P H1, H2 and non-isomorphic bipartite subgraph H3

2. Preliminaries

The fundamental definitions are presented to enhance the understanding of the study. The
subgraph isomorphism (SI) problem is an extension of the graph isomorphism problem.
Definition 1 (Graph isomorphism): 𝐺1 = (𝑉, 𝐸) and 𝐺2 = (𝑉’, 𝐸’) are given two graphs. If
there is a surjective function 𝐴 from 𝐺1 to 𝐺2, 𝐴: 𝐺1 → 𝐺2 such that, ∀ 𝑣 ∈ 𝑉, 𝐴(𝑣) ∈ 𝑉’ and
∀ 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸, 𝐴(𝑒) = (𝐴(𝑣1), 𝐴(𝑣2)) ∈ 𝐸’, then 𝐺1 and 𝐺2 are isomorphic graphs, 𝐺1 ≅
 𝐺2.
For isomorphic graphs, there is at least one mapping that allows the vertices of one graph to
be aligned with the vertices of the other graph, preserving their adjacency relationships. For
instance, in Figure 2, graphs 𝐻1 and 𝐻2 are isomorphic graphs. This isomorphism can be
achieved by mapping the vertices 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉8, 𝑉9, 𝑉10 of H1 to 𝑉2, 𝑉4, 𝑉1, 𝑉3, 𝑉5, 𝑉6, 𝑉7 ,
respectively, in 𝐻2.
Definition 2 (Subgraph - induced subgraph): 𝐺 = (𝑉, 𝐸) is a given graph, any substructure
𝐻 = (𝑉’, 𝐸’) of G such as 𝑉’ ⊆ 𝑉 and 𝐸’ ⊆ 𝐸 ∩ (𝑉’ 𝑥 𝑉’) is a subgraph of G. If E’ contains all the
edges in E that are between vertices in the set V’ that is 𝐸’ = 𝐸 ∩ (𝑉’𝑥𝑉’) then, H is an induced
subgraph of G.
In the context of the SI problem, it is crucial to distinguish between the terms subgraph and
induced subgraph. The solution algorithm may not consider extra edges when searching for
non-induced subgraphs. For instance, in Figure 2, all three subgraphs H1, H2, and H3 are
isomorphic to P. However, H3 is not a valid solution for an algorithm targeting induced
subgraphs of G. This study focuses on finding isomorphic induced subgraphs; hence, the term
subgraph is used to refer to induced subgraphs in this paper.

48

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Figure 4. The workflow of the proposed subgraph isomorphism algorithm is illustrated. The
target graph is embedded into triplets, and these triplets are stored in a multi-level key hash

map (top). During the search for isomorphic subgraphs using a query graph, the query is
also initially embedded into triplets. Subsequently, the suitable candidates for each query

triplet are selected from the hash map through a filtering process. Finally, the exact solutions
are generated by joining candidate triplets while taking into account the connections of the

triplets within the query graph (bottom)

Definition 3 (Subgraph isomorphism problem): 𝐺 = (𝑉, 𝐸) and 𝑃 = (𝑉’, 𝐸’) are given two
graphs where |𝑉’| ≤ |𝑉|, |𝐸’| ≤ |𝐸|. The subgraph isomorphism problem is finding all
subgraphs H in the G such that 𝐻 ≅ 𝑃.
The graph 𝐺 in Figure 2 has two subgraphs 𝐻1 and 𝐻2 that isomorphic to 𝑃. However, 𝐻3 is not
isomorphic to P because the edge 𝑒 = (𝑣12, 𝑣13) makes any mapping possible.
Definition 4 (Bipartite graph): 𝐺 = (𝑈, 𝑉, 𝐸) is a bipartite graph where U and V are two
disjoint and independent vertex sets and E is edge set that consists of edges 𝑒 = (𝑢, 𝑣) where
u is in U and v is in V.
In Figure 3, all the graphs depicted are bipartite graphs. Bipartite graphs are characterized by
having two disjoint and independent vertex sets, denoted as U and V, as shown in the figure.
In a bipartite graph, every edge connects two vertices that belong to different sets, meaning
there are no edges within the same set. This property distinguishes bipartite graphs from
general graphs where edges can connect any pair of vertices.
Definition 5 (Bipartite isomorphism): 𝐺 = (𝑈, 𝑉, 𝐸) and 𝐺’ = (𝑈’, 𝑉’, 𝐸’) are given two bipartite
graphs. If there is a bijection 𝐼: (𝑉 → 𝑉’, 𝑈 → 𝑈’) such that ∀𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 and
𝑒 = (𝑢, 𝑣) ∈ 𝐸; 𝐼(𝑢) ∈ 𝑈’, 𝐼(𝑣) ∈ 𝑉’ and (𝐼(𝑢), 𝐼(𝑣) ∈ 𝐸’ then, G and G’ are isomorphic bipartite
graphs.
Indeed, in bipartite graphs, the partitioning of vertices into different partite sets is crucial for
bipartite isomorphism. The partite sets represent distinct groups of objects, such as clients-
servers or human protein-virus protein, and the relationships between them are captured by
the edges connecting vertices from different sets. Consequently, mirrored subgraphs, where
the partite sets are swapped, do not convey the same meaning.
Figure 3 provides an example of bipartite isomorphic graphs. The graphs 𝐻1 and 𝐻2 are
bipartite isomorphic since they exhibit the same vertex-partitioning pattern and maintain the
relationships between the two partite sets. However, graph 𝐻3 is not bipartite isomorphic to
𝐻1 and 𝐻2, even though all three graphs are isomorphic in the general sense.

49

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Definition 6 (SI problem in bipartite graphs): 𝐺 = (𝑈, 𝑉, 𝐸) and 𝐺’ = (𝑈’, 𝑉’, 𝐸’) are given two
bipartite graphs such that |𝑈| ≤ |𝑈’|, |𝑉| ≤ |𝑉’|, |𝐸| ≤ |𝐸’|. The SI problem on the bipartite
graphs is finding all subgraphs 𝐻 of 𝐺’ that are bipartite isomorphic to G.

Figure 5. The target graph 𝐺 and its triplet embeddings

The subgraph isomorphism problem on bipartite graphs is almost the same as the SI problem.
However, only bipartite isomorphic subgraphs are considered valid solutions. In Figure 3, the
subgraphs 𝐻1 and 𝐻2 are in the solution set of the SI problem for 𝐺 and 𝑃. However, 𝐻3 is not
bipartite isomorphic to P because the vertex 𝑉2, which is the mapping of 𝑃5, is in the set V
instead of the set U.
As all essential definitions are presented, In Section 3, our novel algorithm is introduced, and
all the sub-processes are explained in detail. Moreover, the advantages of the bipartite
structure are explicitly described for each sub-process. The experimental results are given and
discussed in Section 4. Finally, our conclusions regarding this study are presented in Section
5.

3. Methodology

Our algorithm utilizes an enumerate, filter, and build approach, which is commonly employed
in state-of-the-art algorithms for solving the SI problem. The workflow of the algorithm is
illustrated in Figure 4. Initially, the target graph G is embedded into triplets and subsequently
stored within a multi-level hash map. This hash map is then employed to fulfill subgraph
querying requests. During the SI search phase, the query graph is also embedded into triplets
as a preliminary step. Relevant triplets within G are extracted through hash map queries to
establish potential matches for the query graph's triplets. Ultimately, these appropriate
candidates are joined together, accounting for the structural attributes of the query graph, with
the aim of constructing exactly isomorphic subgraphs with the query. These procedures have
been specifically adapted for bipartite graphs to enhance the performance of SI searches for
this graph type. The details of how the proposed algorithm leverages the bipartite structure of
the target graph in each procedure and elucidates the resulting improvements in performance.

3.1. Embedding

Many state-of-the-art algorithms addressing the SI problem primarily focus on enhancing the
detection of sub regions within the target graph that may potentially contain the query
subgraph. These algorithms often employ graph embedding techniques to enumerate the sub-

50

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

parts of the target graph. Among the available graph embedding techniques, vertex
embedding techniques are widely used due to their ability to provide valuable local
information that can effectively aid in sub region filtering. These techniques make use of
structural properties of vertices, such as vertex degrees, the count of k-length neighbors, and
neighbors' degrees. For example, in (Tian and Patel, 2008), a vertex embedding technique is
employed that stores a vector for each neighbor of a vertex. This vector incorporates
information such as degree, neighbor count, label, and the sum of neighbor degrees. By
utilizing such embedding techniques, algorithms can access highly informative and detailed
local information for all vertices, thereby improving the accuracy of the filtering process.

Figure 6. An example of generating solution building triplet set for the query graph P. The
TA and TB triplets are sufficient to build query graph whereas the TC triplet is unnecessary

The vertex embedding techniques can be inefficient when applied to huge target graphs.
Building solutions by using the filtered candidates can become more challenging since the
algorithm needs to extend partial solutions by one vertex at each step. As the number of partial
solutions exponentially grows with each step, these techniques can result in being inoperative
due to execution times for generating exact solutions.

To address these challenges, methods involve embedding more than one vertices together
(Chen et al., 2007; Hong et al., 2015), as opposed to individually embedding vertices. These
vertex groups often represent common sub structures such as cycles, paths, or other patterns.
By considering these groups, the number of embeddings is reduced, leading to a smaller
search space and enabling faster candidate filtering for parts of the query graph. Furthermore,
since the embeddings consist of multiple components and the algorithm can add multiple
components to partial solutions, the number of steps required for the solution process has the
potential to decrease.

In this study, a path embedding technique is used instead of vertex embedding due to the
mentioned problems. The length of the path, 𝐿, has been optimized since it is crucial for the
performance of the embedding technique. If L is set to be too large, the embeddings have high
resolution, making the filtering process more demanding. However, long paths lead to
complicate the handling of complete solutions. In some cases, the solutions may not be feasible
to handle because the algorithm may lack smaller sub structures necessary to construct a
complete solution. On the other hand, when the path length is too small, it can lead to
problems, as explained for single vertex embedding techniques. Various constraints are taken
into account to optimize this parameter for bipartite graphs.

Initially, a path length of 1, denoted as 𝐿 = 1 or P2 is considered. Such path consisting of two
vertices connected by a single edge. This sub structure is promising for embedding bipartite

51

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

graphs because each embedding consists of two vertices that hosted in different partitions.
Such an information can be used for efficient filtering. However, in an undirected complete
bipartite graph with partitions of sizes k and m, the total number of embeddings is equal to k *
m. Since the solution algorithm benefits from the partitions of vertices in the embeddings, the
partial solutions can be expanded only by suitable candidates that belong to the same partition
order as their corresponding query embeddings.

The 𝐿 = 2 structure, also known as P3 or triplet, is evaluated since it also potentially suitable
for embedding bipartite graphs. Each triplet consists of two tail vertices in one partition and
one head vertex in the other partition, regardless of their adjacencies. While the number of
embeddings are increased when using P3 instead of P2, triplets offers an opportunity to further
enhance filtering and solution building performance compared to P2. Triplets can handle three
vertices and two edges simultaneously, leveraging the same structural information as P2.

The 𝐿 = 3 paths are also considered to explore if P4 structures offer any additional benefits
compared to triplets. However, it seems that P4 structures provides no additional information
specific to the bipartite structure. In fact, they can be precisely represented using two triplets.
Therefore, it is concluded that values of 𝐿 greater than 2 are not suitable for the bipartite
graphs. Moreover, P4 structures and longer paths have the potential to create loops, which
must be checked by the algorithm to ensure compliance with the conditions of the induced
subgraph isomorphism problem. However, such a control mechanism would add
computational load to the algorithm. Hence, it is determined that the most suitable path length
is 2 for bipartite graphs, as any path longer than 2 would decrease the algorithm's
performance.

The embedding path structure can be expanded without altering the parameter 𝐿 by
incorporating three neighbors of the head vertex. This structure, known as the claw, contains
the same information as triplets but allows for an increase in the number of components at
each step of partial solution extension. However, the concatenation process of two claws takes
more time than triplet concatenation due to the additional vertex that needs to be checked for
suitability with the current partial solution. Another challenge with the claw structure arises
during the generation of embeddings, as the presence of an extra vertex increases the number
of embeddings. This increase in the number of embeddings can significantly impact the
performance of the embedding and filtering processes.

Several of these structures have been tested, and the comprehensive experimental results are
presented in the fourth part. The performance results obtained support our theoretical
assumptions, indicating that triplets are the optimal data structure for embedding bipartite
graphs.

3.2. Filtering

The performance of the algorithm heavily relies on the filtering process, which is as important
as the embedding process. The filtering process starts by enumerating triplets in the query
graph using the same embedding method used in the target graph. The embeddings of the
target graph are then filtered to identify candidates for the query triplets based on their
structural properties. While query graphs typically consist of a few triplets, the number of
embeddings in the target graph can be in the millions, making effective filtering techniques
essential to maintain the algorithm's efficiency.

Our algorithm leverages vertex degrees and partite information for efficient filtering. The
triplet structure provides favorable locality for the solution building process. Since exact
solutions require identical adjacency relations, vertex degrees serve as a powerful indicator for
identifying suitable candidates.

52

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Incorporating partite information into the algorithm ensures the elimination of unsuitable
candidates during the solution building process, which can be computationally expensive.
Furthermore, the partite information plays a crucial role in generating exact solutions in
bipartite graphs, preventing the algorithm from producing mirrored solutions where all
vertices are placed in the opposite partition.

Table 1. The hash-map of embeddings in Figure 5.
Level-0 Level-1 Level-2 Level-3 Triplet List

P1

1 3
2 T12

3 T8

2

2 3 T1

3

1 T12

2 T3

3 T2, T7, T9

3

2 2 T1

3
1 T8

2 T2, T7, T9

P2

2
2 3 T4

3 3 T5, T6

3

2
2 T4

3 T11

3
2 T5, T6

3 T10

The embeddings of the target graph, as shown in Figure 6, are stored in a multi-level hash map
similar to Table 1. This hash map enables efficient filtering with 𝑂(1) access time. Pushing the
embeddings into the hash map requires a total execution time of 𝑂(𝑛) due to the nature of map
data structures (𝑂(1) 𝑝𝑒𝑟 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 ∗ 𝑛 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠).

The filtering process aims to avoid complex search operations and provide 𝑂(1) or, at most,
𝑘 ∗ 𝑂(1) access time, ensuring that the keys satisfy the filtering constraints to a large extent.

The level-0 key of the map has two possible values, 𝑃1 and 𝑃2, representing the two partitions
of the bipartite graph. The partite of a triplet is determined by the partite of its head vertex.
For example, if the head vertex of a query triplet belongs to partition 1, the candidates for that
triplet will be limited to the embeddings with a level-0 key value of 𝑃1. By filtering the
embeddings based on their partite information at the level-0 key, the algorithm significantly
reduces the search space.

The level-1, level-2, and level-3 keys in the hash map store the vertex degrees of the triplets.
Level-1 corresponds to the degrees of the left tail vertices, level-2 corresponds to the degrees
of the head vertices, and level-3 corresponds to the degrees of the right tail vertices. It should
be noted that the order of the left and right tails is interchangeable.

During the filtering process, it is necessary to consider the mirrored values of the level-1 and
level-3 keys. To avoid the additional computational load of handling mirrored values, each
embedding is stored in the hash map with both the regular key combination and an alternate
key combination where the level-1 and level-3 keys are interchanged (as shown in Table 1, 𝑇1).
Although this approach doubles the memory usage for storing the embeddings, it reduces the
CPU requirements of the filtering process.

53

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

In the filtering process, it is important to account for the presence of additional edges between
vertices that are not part of the sub region in an isomorphic subgraph. These extra edges do
not violate the definition of exact subgraph isomorphism but can increase the vertex degrees.
To prevent filtering out valid candidates, the algorithm filters only the triplets that have a
lower vertex degree for each key level. For example, if the left tail vertex of the query triplet
has a degree of d, then only triplets with a vertex degree equal to or greater than d for the left
tail vertex will remain for the next levels.

The elimination process involves searching the keys of the hash map, resulting in a filtering
process that takes more than 𝑂(1) execution time. However, since there can be at most n
different degrees in a graph, the filtering process takes 3 ∗ 𝑛 ∗ 𝑂(1) = 𝑂(𝑛) execution time in
the worst case. In practical scenarios, the degree diversity is typically much less than the
number of vertices, so the filtering process is usually completed quickly.

By default, the proposed algorithm doesn’t consider vertex labels or edge directions, as the
focus is on solving the subgraph isomorphism problem in bipartite graphs in the most general
form. However, the algorithm can support the inclusion of these constraints by adding
additional levels to the data structure. For example, vertex labels can be incorporated into the
filtering process by adding three distinct keys to the data structure, allowing the checking of
triplet vertices based on their labels before considering their compatibility with vertex degrees.
Similarly, the algorithm can be adapted to support inexact searches by adding one or two
levels for vertex labels. The absence of keys for the labels provides flexibility, enabling
researchers or end-users to customize the algorithm according to their specific needs.

3.3. Building solution

The process of building exact solutions involves joining candidates of query triplets together
to generate partial solutions. These partial solutions are expanded by adding exactly one
candidate on each step. If a partial solution cannot be expanded and is isomorphic to the query
graph, it is considered a valid exact solution. However, if a partial solution has missing vertices
and there is no possibility for further expansion, it is eliminated.

When a candidate joins a partial solution, it is done while considering the adjacency relations
of its owning triplet. The partial solution represents a mapping of a sub region in the query
graph, and some vertices of the owner triplet may already be mapped in the current partial
solution. This means that some vertices in the partial solution must match the vertices of the
new candidate. Therefore, partial solutions can be expanded with candidates that share the
same adjacency relation between their owner triplet and the mapped sub-region. By
considering these adjacency relations, the algorithm ensures that the candidate being added is
compatible with the existing mapping.

This step-by-step expansion and mapping process allows the algorithm to gradually build
exact solutions by iteratively adding compatible candidates to the partial solutions, ultimately
leading to a complete and valid mapping of the query graph.

The joining process of two triplets involves considering common vertices between them.
Candidates of one triplet can generate partial solutions by joining with candidates of the other
triplet if they share a common vertex. Some candidates may not be compatible due to
mismatched mappings. Joining triplets allows the algorithm to gradually build partial
solutions by expanding them with compatible candidates.

Not all triplets in the query graph are necessary for building complete solutions. Triplets
whose vertices have already been mapped in the current partial solution do not contribute

54

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

additional information. Joining such triplets with existing partial solutions does not generate
new solutions or eliminate existing ones.

Selecting the optimal set of triplets, known as the Solution Building Triplet Set (BTS), is crucial
for algorithm performance. The optimal BTS minimizes the number of joining processes
required, as joining triplets can be computationally expensive. However, finding the optimal
BTS is challenging, and there is no greedy method that guarantees an optimal solution. Brute-
force algorithms can be used to generate all possible BTSs and estimate their join count based
on candidate numbers. While this approach can yield efficient BTSs, it becomes impractical for
larger BTS sizes due to excessively long execution times.

Figure 7. The four query graphs used in both experiments

The proposed greedy algorithm aims to find efficient Solution Building Triplet Sets (BTS) in a
time-efficient manner. The algorithm sorts query triplets based on the number of candidates
they have, with the triplet having the fewest candidates added as the first triplet in the BTS.
Privileged triplets are marked and added to the BTS based on the number of candidates they
have. Triplets with more uncontained edges become privileged for each step.

The ordering of triplets within the BTS is also optimized to reduce the number of unsuitable
partial solutions. The triplet with the highest number of candidates is placed at the head of the
ordered BTS. The next triplet is selected from the triplets that have more contained vertices by
the ordered BTS, with priority given to triplets with the highest number of candidates. This
selection reduces the generation of unsuitable partial solutions and decreases the number of
partial solutions for subsequent steps.

By utilizing these greedy approaches, the algorithm aims to minimize unnecessary
computations by reducing the number of joins and unsuitable partial solutions, ultimately
improving the performance of building exact solutions.

4. Results and Discussions

4.1. Experimental Setup

The performance of the proposed algorithm is assessed both with and without the
enhancements suggested for addressing sub-problems. Additionally, the empirically best

55

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

version of the algorithm is compared against state-of-the-art subgraph isomorphism
algorithms to demonstrate its efficiency. The execution time of the querying process of
algorithms is used as the performance metric. Both the proposed algorithm and its competitors
are implemented in the Python programming language. The comparative algorithms are
evaluated using their publicly accessible implementations. The experiments are carried out on
a computer equipped with a 3.3 GHz i7 CPU and 16 GB of RAM, running the Ubuntu
operating system.

4.2. BTS Selection Methods Comparison

Two distinct experimental setups were conducted to assess improvements in determining the
reconstruction strategy for the query graph solution. Initially, the selection algorithms of the
BTS were evaluated in terms of the time required to calculate BTS and the number of joins
needed to identify all solutions using the computed BTS. Subsequently, the algorithms for
ordering BTS to construct solutions were assessed based on their execution time for generating
solutions.

The protein-protein interaction network between Adenoviridae proteins and Human proteins
obtained from PHISTO (Durmuş Tekir et al., 2013). Database is used as target graph in both
experiments. This interaction graph comprises 324 vertices with 379 interactions among them.
The query graphs, as depicted in Figure 7, were employed in both experiments to evaluate
how the tested algorithms perform with query graphs of varying sizes. Each individual test
was repeated 10 times, and the average execution times are presented.

The greedily selection approach for generating BTS was compared with the brute-force
selection algorithm, revealing that the greedy algorithm is 10 to 1000 times faster than its
alternative, as indicated by the experimental results. This substantial difference in BTS
selection holds particular significance in fields that frequently encounter changing query
graphs. The results suggest that the brute-force approach tends to become impractical as the
size of the query graphs increases, while the greedy approach exhibits greater resilience to
such increases in query graph size. However, it is worth noting that BTS selection is a one-time
process, and the brute-force approach may still be preferable in situations where time
constraints are not a primary concern, particularly in fields that consistently encounter the
same query graphs.

The algorithms are further assessed based on the quality of the BTS they generate. The
performance of a BTS is gauged by comparing the total number of joins required to generate
all solutions using that BTS. The results, as presented in Table 2, indicate that the greedy
algorithm largely produced optimal solutions for three out of the four query graphs. However,
for query 4, the brute-force algorithm's optimal solution outperformed the BTS generated by
the greedy algorithm in terms of join count. It is important to note that the greedy algorithm
may increase query time due to the growing number of join operations needed for constructing
solutions. Therefore, the choice of BTS selection method should be made based on the
frequency of query changes within the specific field of application.

Table 2. Performance comparison of reconstruction set selection algorithms.

Algorithm Query (1) Query (2) Query (3) Query (4)

Greedy
Exec time 3.17x10-5 8.37x10-5 8.20x10-5 1.15x10-4

of Joins 73984 458480 122600 37550538

Brute-Force
Exec time 1.48x10-4 1.54x10-2 6.56x10-3 7.38x10-1

of Joins 73984 458480 122600 20959821

56

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

The evaluation of the algorithms for ordering the triplets within the BTS is conducted
by measuring the query execution times incurred when building solutions by joining
the triplets in the order in which they were generated. There are two types of strategies
for ordering BTS, distinguished by whether they take into account the connection with
the current partial query when selecting the next triplet for ordering. Additionally,
various approaches for selecting the most advantageous triplet among the current
candidates can be explored. In this study, we tested the strategy of selecting the next
triplet based on the number of candidates it has in the target graph.

Figure 8. Performance of comparison algorithms in subgraph isomorphism search on the
protein-protein interaction graph of Poxviridae. The proposed algorithm consistently

outperforms all other algorithms in the search for all subgraphs

The experimental results presented in Table 3 revealed that the strategy of selecting the next
triplet from those that don’t break connectivity exhibited superior performance when
compared to competing strategy. Additionally, giving priority to triplets with the highest
number of candidates in the target graph led to a remarkable enhancement in performance.
As a result, the greedy approach was employed for candidate selection within the BTS in
subsequent experiments. Furthermore, the selection of the next triplet during solution
construction was determined by choosing the triplet with the maximum number of candidates
from among the remaining triplets connected with the current partial solution.

Table 3. Comparative execution times of querying with various BTS ordering algorithms.

Approach Candid count Query (1) Query (2) Query (3) Query (4)

Connected
Maximum 1.22x10-5 5.41x10-2 8.21x10-1 2.47

Minimum 9.05x10-4 9.17x10-1 2.25 98.25

Not connected
Maximum 1.10x10-5 4.67 103.25 173.10

Minimum 1.51x10-5 1.21 19.37 125.92

1

10

100

1000

10000

100000

1000000

4 5 8 10 20

E
x
e
c.

 T
im

e
 l

o
g

(m
se

c.
)

Pattern Size (number of vertices)

index-based

Turboiso

QSI

VF2

57

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

4.3. Comparing With the State-of-art Methods

The proposed index-based solution method is compared with state-of-the-art subgraph
isomorphism algorithms VF2 (Cordella et al., 2004), QuickSI (Shang et al., 2008) and Turboiso
(Han et al., 2013). Two experiments are designed to evaluate the performance of our algorithm
in bipartite graphs. In the first experiment, the performance of the algorithms is evaluated by
comparing their execution times with queries of varying sizes. The protein-protein interaction
dataset of Poxviridae serve as the target graph for these experiments, comprising 210 proteins
and 454 interactions among them. The query graphs depicted in Figure 7 are employed in
experiments. Furthermore, a larger query graph, represented as a complete bipartite graph
with 20 vertices, is also utilized.

Figure 9. Performance comparison of state-of-the-art algorithms on different target graphs.
The results indicate that our algorithm outperforms others when the target graph size

exceeds a few hundred vertices. However, in small graphs, the algorithm exhibits poorer
performance, primarily due to its preprocessing step

The tests are conducted ten times for each algorithm across all five query graphs. The
resultings, as depicted in Figure 8, demonstrated the superior performance of the proposed
algorithm, with notable improvements ranging from 2 to 500 times shorter querying times. It
is worth noting that our algorithm consistently exhibited the best performance across all query
sizes, while all methods exhibited acceptable execution times in the case of small query graphs.
Particularly, the Turboiso algorithm displayed the second-best performance across all query
graphs. As anticipated, the VF2 algorithm exhibited the poorest performance, in line with
previous studies that have established the superior performance of both Turboiso and QuickSI.
Nevertheless, it remains valuable to present VF2's performance as a reference point for
baseline performance assessment.

In contrast to the performance in small query graphs, it is evident that the execution times of
the algorithms increase quadratically with the query sizes, whereas our algorithm
demonstrates a linear increase. This highlights the sustained usability of the proposed
algorithm for larger query graphs, especially as its competitors become impractical for such
scenarios. Consequently, the performance results showcase the algorithm's superiority,
underscoring its robustness in the face of expanding query sizes.

1

10

100

1000

10000

100000

1000000

4 5 8 10 20

E
x
e
c.

 T
im

e
 l

o
g

(m
se

c.
)

Pattern Size (number of vertices)

index-based

Turboiso

QSI

VF2

0.0001

0.01

1

100

10000

1000000

100000000

54 122 334 454 768

E
x
e
c.

 T
im

e
 l

o
g

(m
se

c.
)

Graph Size (number of vertices)

index-based

Turboiso

QSI

VF2

58

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

We also assessed the algorithm's execution times on target graphs with varying sizes, and the
performance results are depicted in Figure 9. These graphs encompass protein-protein
interactions involving five different viruses and their proteins in relation to human proteins.
Our algorithm exhibited poor performance than its competitors on small graphs containing
120 or fewer vertices, primarily due to its preprocessing step for index generation. However,
the results illustrate that our algorithm demonstrates superior performance when the size of
the target graphs exceeds a few hundred vertices.

The proposed algorithm exhibits greater robustness for growing target graph sizes compared
to all other algorithms in the comparison. However, Turboiso and QuickSI demonstrate greater
resilience to increasing target graph sizes than to increases in query sizes. VF2 shows the
poorest performance and robustness. The experimental results provide compelling evidence
that our index-based algorithm stands as a prominent solution for addressing the subgraph
isomorphism problem within bipartite graphs.

5. Conclusions

Our study presents substantial contributions to the field of subgraph isomorphism in bipartite
graphs. We have addressed the pivotal challenge of identifying subgraphs that are isomorphic
to a given query graph, acknowledging the complexities stemming from the non-linear nature
of graphs and the ever-expanding size of datasets.

To address the exact subgraph isomorphism problem, we have introduced a novel index-
based solution algorithm tailored specifically for bipartite graphs. Our approach employs a
divide and filter strategy; the target graph is embedded using triplet structures and
subsequently filtered based on vertex degrees and partitions of search graph. This approach
significantly reduces the search space and enhances the overall efficiency of the algorithm.

Our experimental results conclusively demonstrate the superiority of our index-based
algorithm when compared to state-of-the-art methods. It consistently achieves 2 to 500 times
shorter querying times, underscoring its effectiveness and scalability for medium to large
bipartite graphs.

Furthermore, our study has underscored the critical importance of reconstruction set selection
in achieving computational efficiency. The careful selection of a subset of triplets that
minimizes the number of join operations has proven to be highly effective for improving
overall algorithm performance. Additionally, the ordering of the reconstruction set, starting
with triplets featuring the maximum number of candidates and selecting neighboring triplets
with high candidate counts, has proven to be a valuable strategy. Nonetheless, there is still
room for enhancing the algorithm's performance by refining the ordering strategy.
Additionally, exploring the possibility of joining multiple triplets that share intersecting join
processes may be worthwhile, as it holds the potential to reduce solution construction time.

In summary, our study provides a comprehensive evaluation of different algorithms for
solving the exact subgraph isomorphism problem on bipartite graphs. The proposed index-
based algorithm stands out for its remarkable efficiency and effectiveness, establishing itself
as a superior solution for large-scale bipartite graphs like pathogen-host protein-protein
interaction networks.

Acknowledgements

We would like to thank Dr. Saliha Durmuş and Merve Yaşar Semiz for their contribution to
setting up experiments and providing helpful feedback on our study.

59

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Author Statement

The authors confirm their contributions to the paper as follows: algorithm conception and
design: M.B. Koca, F.E. Sevilgen; implementation and experimentation: M.B. Koca; analysis of
experimental results: M.B. Koca, F.E. Sevilgen; draft manuscript preparation: M.B. Koca, F.E.
Sevilgen. All authors reviewed the results and approved the final version of the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

References

Afrati, F. N., Fotakis, D., & Ullman, J. D. (2013). Enumerating Subgraph Instances Using Map-
Reduce. 2013 IEEE 29th International Conference on Data Engineering (ICDE), 62–73.

Bonnici, V., Ferro, A., Giugno, R., Pulvirenti, A., & Shasha, D. (2010). Enhancing Graph
Database Indexing by Suffix Tree Structure. In T. M. H. Dijkstra, E. Tsivtsivadze, E.
Marchiori, & T. Heskes (Eds.), Pattern Recognition in Bioinformatics. Berlin, Heidelberg:
Springer.

Carletti, V., Foggia, P., & Vento, M. (2015). VF2 Plus: An Improved Version of VF2 for
Biological Graphs. In C.-L. Liu, B. Luo, W. G. Kropatsch, & J. Cheng (Eds.), Graph-Based
Representations in Pattern Recognition. Cham: Springer International Publishing.

Chen, C., Yan, X., Yu, P. S., Han, J., Zhang, D.-Q., & Gu, X. (2007). Towards Graph Containment
Search and Indexing. Proceedings of the 33rd International Conference on Very Large Data
Bases, 926–937. Vienna, Austria: VLDB Endowment.

Cheng, J., Ke, Y., Ng, W., & Lu, A. (2007). Fg-index: Towards Verification-free Query
Processing on Graph Databases. Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, 857–872. New York, NY, USA: Association for
Computing Machinery.

Cook, S. A. (2023). The Complexity of Theorem-Proving Procedures. In Logic, Automata, and
Computational Complexity: The Works of Stephen A. Cook (1st ed.). New York, NY,
USA: Association for Computing Machinery.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2004). A (Sub)graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10), 1367–1372.

Corneil, D. G., & Gotlieb, C. C. (1970). An Efficient Algorithm for Graph Isomorphism. Journal
of the ACM, 17(1), 51–64.

Durmuş Tekir, S., Çakır, T., Ardıç, E., Sayılırbaş, A. S., Konuk, G., Konuk, M., Ülgen, K. Ö.
(2013). PHISTO: Pathogen–host interaction search tool. Bioinformatics, 29(10), 1357–
1358.

Han, W.-S., Lee, J., & Lee, J.-H. (2013). Turboiso: Towards Ultrafast and Robust Subgraph
Isomorphism Search in Large Graph Databases. Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, 337–348. New York, NY, USA:
Association for Computing Machinery.

He, H., & Singh, A. K. (2008). Graphs-at-a-time: Query Language and Access Methods for
Graph Databases. Proceedings of the 2008 ACM SIGMOD International Conference on

60

Koca and Sevilgen Scientific Research Communications, vol. 4(1), 2024

Management of Data, 405–418. New York, NY, USA: Association for Computing
Machinery.

Hong, L., Zou, L., Lian, X., & Yu, P. S. (2015). Subgraph Matching with Set Similarity in a Large
Graph Database. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2507–2521.

Kim, H., Choi, Y., Park, K., Lin, X., Hong, S.-H., & Han, W.-S. (2023). Fast Subgraph Query
Processing and Subgraph Matching via Static and Dynamic Equivalences. The VLDB
Journal, 32(2), 343–368.

Koca, M. B., & Sevilgen, F. E. (2019). A Novel Approach for Subgraph Isomorphism Problem
on Bipartite Graphs. 2019 27th Signal Processing and Communications Applications
Conference (SIU), 1–4.

Liang, Y., & Zhao, P. (2017). Similarity Search in Graph Databases: A Multi-Layered Indexing
Approach. 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 783–794.

Peng, Y., Fan, Z., Choi, B., Xu, J., & Bhowmick, S. S. (2015). Authenticated Subgraph Similarity
Searching Outsourced Graph Databases. IEEE Transactions on Knowledge and Data
Engineering, 27(7), 1838–1860.

Shang, H., Zhang, Y., Lin, X., & Yu, J. X. (2008). Taming Verification Hardness: An Efficient
Algorithm for Testing Subgraph Isomorphism. Proceedings of the VLDB Endowment,
1(1), 364–375.

Tian, Y., & Patel, J. M. (2008). TALE: A Tool for Approximate Large Graph Matching. 2008
IEEE 24th International Conference on Data Engineering, 963–972.

Ullmann, J. R. (1976). An Algorithm for Subgraph Isomorphism. Journal of the ACM, 23(1),
31–42.

	1. Introduction
	2. Preliminaries
	3. Methodology
	3.1. Embedding
	3.2. Filtering
	3.3. Building solution

	4. Results and Discussions
	4.1. Experimental Setup
	4.2. BTS Selection Methods Comparison
	4.3. Comparing With the State-of-art Methods

	5. Conclusions
	Acknowledgements
	Author Statement
	Conflict of Interest
	References

