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Abstract 

The fundamental subject of a single degree of freedom system's free 
vibration is essential in the field of mechanical vibrations, with 
applications in a wide range of engineering fields. This paper presents a 
novel numerical method for solving this problem based on Bernoulli 
polynomials in matrix form. The method is simple to implement and 
requires only basic linear algebra operations. The method is also very 
efficient; and can be used to solve problems with the single degree of 
freedom system. The proposed method is illustrated by a numerical 
example, and the results are compared with those of the exact solution. 
The results show that the proposed method is highly accurate and efficient. 

 

 

 

1. Introduction  

Understanding the natural oscillations of damped spring-mass systems with a single degree 
of freedom is a cornerstone of mechanical vibrations. In mechanical vibrations, the free 
vibration of damped spring-mass systems having single degree of freedom is essential for 
advanced systems. Interestingly, many complex systems can be simplified to a single degree 
of freedom spring-mass model. As a result, solving the equations of motion for this system can 
be used to solve many other more complex problems. There are a variety of effective methods 
for calculating solutions for a spring-mass-damper system excited by a harmonic force. 

The approximation method based on Taylor polynomials (Kurt and Çevik, 2008), Laguerre 
(Savaşaneril, 2018) and Lucas polynomials (Savaşaneril, 2023) is used for the solution of single 
degree of freedom system. Also, an exponential matrix method is developed to solve delayed 
single degree of freedom system (Çevik et al., 2014). In addition, different matrix methods 
based on different polynomials have been developed for various type systems of differential 
equations (Yüzbaşı and Karaçayır, 2017; Yüzbaşı et al., 2012; Yüzbaşı and Yıldırım, 2021; Sezer 
and Kaynak, 1996; Bahşi et al., 2018; Gülsu et al., 2011; Baykuş and Sezer, 2017; Biçer and Dağ, 
2023; Kürkçü et al., 2016; Çayan et al., 2022; Yıldız and Sezer, 2019). 
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In this study, a matrix method based on Bernoulli polynomial is used to solve the single degree 
of freedom system. Also, this method has been used to solve high-order linear differential- 
difference equations, linear delay difference equations with variable coefficients, mixed linear 
Fredholm integro-differential-difference equations, nonlinear differential equations (Erdem 
and Yalçınbaş, 2012a; Erdem and Yalçınbaş, 2012b; Erdem et al., 2013; Erdem Biçer and Sezer, 
2019). 

We consider the Bernoulli polynomial solution of an 𝑚th order differential equation given in 
Eq. (1): 

 ∑𝑃𝑘𝑥(𝑘)(𝑡) = 𝑓(𝑡),

𝑚

𝑘=0

 (1) 

with initial conditions: 

 ∑𝑎𝑖𝑘𝑥
(𝑘)(𝑎) = 𝜆𝑖,

𝑚−1

𝑘=0

 𝑖 = 0,1,⋯ ,𝑚 − 1. (2) 

𝑃(𝑡) is analytic function defined on 𝑎 ≤ 𝑡 ≤ 𝑏 𝑎𝑖𝑘 , 𝜆𝑖 are suitable constants. In the present 

method, the solution of (1) is expressed in the Bernoulli polynomial form as in Eq. (3): 

 𝑥(𝑡) = 𝑥𝑁(𝑡) = ∑𝑎𝑛𝐵𝑛(𝑡),

𝑁

𝑛=0

 (3) 

where, 𝐵𝑛(𝑡) is the Bernoulli polynomials and 𝑎𝑛, 𝑛 = 0,1, ⋯ , 𝑁 are unknown coefficients 

(Gülsu et al., 2011). 

2. Fundamental Matrix Relations 

The approximate solution of Eq. (1) in terms of Bernoulli polynomials can be expressed as in 
Eq. (4): 

 𝑥(𝑡) = 𝑥𝑁(𝑡) = 𝐁(𝑡)𝐀 (4) 

where, 

 𝐁(𝑡) = [𝐵0(𝑡) 𝐵1(𝑡) ⋯ 𝐵𝑁(𝑡)], 𝐀 = [𝑎0 𝑎1 ⋯ 𝑎𝑁]𝑇. (5) 

Here, the Bernoulli polynomials 𝐵𝑛(𝑥) is defined by  

 
𝑡𝑒𝑥𝑡

𝑒𝑡 − 1
= ∑

𝐵𝑛(𝑥)

𝑛!
𝑡𝑛

∞

𝑛=0

  

or 

 𝐵𝑛(𝑥) = ∑(
𝑛
𝑟
) 𝑏𝑟𝑥

𝑛−𝑟 ,

𝑛

𝑟=0

 which 𝑏𝑟 = 𝐵𝑟(0) (Apostol, 1976).  

The first few Bernoulli polynomials with respect to 𝑡 follows in Eq. (6): 
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𝐵0(𝑥) = 1,

𝐵1(𝑥) = 𝑡 −
1

2
,

𝐵2(𝑥) = 𝑡2 − 𝑡 +
1

6
,

𝐵3(𝑥) = 𝑡3 −
3

2
𝑡2 −

1

2
𝑡,

⋮

 (6) 

Then, by using the Bernoulli polynomials 𝐵𝑛(𝑡)given by (6), we write the matrix form 𝐁(𝑡) as 
follows in Eq. (7): 

 𝐁(𝑡) = 𝐓(𝑡)𝛇𝑇 . (7) 

where, 

 𝐓 = [1 t ⋯ 𝑡𝑁]. (8) 

 

 𝛇 =

[
 
 
 
 
 
 
 
 
 
 
 (

0
0
) 𝑏0 0 0 0 0 ⋯ 0

(
1
0
) 𝑏1 (

1
1
) 𝑏0 0 0 0 ⋯ 0

(
2
0
) 𝑏2 (

2
1
) 𝑏1 (

2
2
) 𝑏0 0 0 ⋯ 0

(
3
0
) 𝑏3 (

3
1
) 𝑏2 (

3
2
) 𝑏1 (

3
3
) 𝑏0 0 ⋯ 0

(
4
0
) 𝑏4 (

4
1
) 𝑏3 (

4
2
) 𝑏2 (

4
3
) 𝑏1 (

4
4
) 𝑏0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(
𝑁
0
) 𝑏𝑁 (

𝑁
1
)𝑏𝑁−1 (

𝑁
2
)𝑏𝑁−2 (

𝑁
3
)𝑏𝑁−3 (

𝑁
4
)𝑏𝑁−4 ⋯ (

𝑁
𝑁

)𝑏0]
 
 
 
 
 
 
 
 
 
 
 

. (9) 

Using the matrix relations in Eq. (4) and Eq. (7), it follows that: 

 
𝑥𝑁(𝑡) = 𝐓(𝑡)𝛇𝑇𝐀. (10) 

For the matrix relation between 𝐓(𝑡) and its 𝑘 −th derivative 𝐓(𝑘)(𝑡) as: 

 
𝐓(𝑘)(𝑡) = 𝐓(𝑡)𝐄𝑘 . (11) 

where, 

 

𝐄 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑁
0 0 0 ⋯ 0]

 
 
 
 

. (12) 

By substituting the matrix form Eq. (11) into Eq. (10), the following matrix relation is obtained: 

 𝑥𝑁
(𝑘)(𝑡) = 𝐓(𝑡)𝐄𝑘𝛇𝑇𝐀, 𝑘 = 0,1,⋯ ,𝑚. (13) 
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3. Bernoulli Collocation Method 

By using the collocation points, 

 𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖, 𝑖 = 0,1,⋯ ,𝑁. (14) 

into Eq. (1) gives Eq. (15): 

 ∑𝑃𝑘𝑥(𝑘)(𝑡𝑖) = 𝑓(𝑡𝑖),

𝑚

𝑘=0

 (15) 

which can be written in matrix form as: 

 𝑾 = [𝑤𝑝𝑞] = ∑𝑃𝑘𝑻(𝑡)𝑬𝑘𝜻𝑇,

𝑚

𝑘=0

𝑝, 𝑞 = 0,1,⋯ ,𝑁.  

For the particular solution, Eq. (15) is written briefly as Eq. (16): 

 𝐖𝐗 = 𝐅 or [𝐖;𝐅] (16) 

where, 

 𝐖 = [𝑤𝑝𝑞] = ∑𝑃𝑘𝐓(𝑡)𝐄𝑘𝛇𝑇 ,

𝑚

𝑘=0

𝑝, 𝑞 = 0,1,⋯ ,𝑁. (17) 

Therefore, unknown Bernoulli coefficients matrix is obtained as in Eq. (18): 

 𝐗 = 𝐖−1𝐅  (18) 

which yields the desired Bernoulli coefficients  𝑥𝑛, 𝑛 = 0,1,⋯ ,𝑁 of the particular solution. 

The matrix form of the initial conditions in Eq. (2) is obtained as in Eq. (19): 

 
𝐔𝒊𝐀 = λ or [𝐔𝒊; λ𝑖], 𝑖 = 0,1,⋯ ,𝑚 − 1 (19) 

where, 

 𝐔𝒊 = ∑𝑎𝑖𝑘T(𝑎)𝐄𝑘𝛇𝑇

𝑚−1

𝑘=0

= [𝑢𝑖0 𝑢𝑖1  ⋯ 𝑢𝑖𝑁]. (20) 

Now, to solve the problem, the following augmented matrix is constructed by replacing the 
last 2 rows of  [𝐖; 𝐅] by the 2-row matrix [𝐔𝒊; λ𝑖]: 

 [𝐖; 𝐅] =

[
 
 
 
 
 
 
 
 

𝑤00 𝑤01 ⋯ 𝑤0𝑁 ; 𝑓0(𝑡)
𝑤10 𝑤11 ⋯ 𝑤1𝑁 ; 𝑓1(𝑡)
⋮ ⋮ ⋱ ⋱ ⋮ ⋮

𝑤𝑁−𝑚,0 𝑤𝑁−𝑚,1 ⋯ 𝑤𝑁−𝑚,𝑁 ; 𝑓𝑁−𝑚(𝑡)

𝑢00 𝑢01 ⋯ 𝑢0𝑁 ; λ0

𝑢10 𝑢11 ⋯ 𝑢1𝑁 ; λ1

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑢𝑚−1,0 𝑢𝑚−1,1 ⋯ 𝑢𝑚−1,𝑁 ; λ𝑚−1 ]

 
 
 
 
 
 
 
 

. (21) 
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4. Solution of the Problem with Bernoulli Collocation Method 

In this study, the solution of the viscously damped single degree of freedom system subjected 
to harmonic excitation (Inman, 2001): 

 𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝐹0𝑐𝑜𝑠𝑤𝑡 (22) 

with initial conditions, 

 
𝑥(0) = λ0

�̇�(0) = λ1
 (23) 

will be examined. Eq. (22) is a second order differential equation so 𝑚 = 2 in Eq (1). Also, the 
constants are 

 𝑃2 = 𝑀,𝑃1 = 𝐶, 𝑃0 = 𝐾.  

5. Particular Solution  

For the particular solution of the problem in matrix form, Eq. (22) is written briefly in the form 
of Eq. (24): 

 𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = ∑𝑃𝑘𝐓(𝑡)𝐄𝑘𝛇𝑇𝐗 = 𝐅

2

𝑘=0

 (24) 

or shortly, 

 𝐖𝐗 = 𝐅 or [𝐖;𝐅]  

where, 

 𝐖 = [𝑤𝑝𝑞] = ∑𝑃𝑘𝐓(𝑡)𝐄𝑘𝛇𝑇 ,

2

𝑘=0

𝑝, 𝑞 = 0,1,⋯ ,𝑁, (25) 

So, the unknown Bernoulli coefficients 𝑥𝑛, 𝑛 = 0,1,⋯ ,𝑁 are obtained as in Eq. (26): 

 𝐗 = 𝐖−1𝐅 (26) 

for the particular solution. 

6. General Solution 

For the general solution of the problem, the matrix form of the initial conditions Eq. (23) is 
written as in Eq. (27) 

 𝐔𝒊 = ∑𝑎𝑖𝑘T(𝑎)𝐄𝑘𝛇𝑇

1

𝑘=0

= [𝑢𝑖0 𝑢𝑖1  ⋯ 𝑢𝑖𝑁] 𝑖 = 0,1. (27) 

and the augmented matrix is obtained as in Eq. (28) 
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 [𝐖; 𝐅] =

[
 
 
 
 
 

𝑤00 𝑤01 ⋯ 𝑤0𝑁 ; 𝑓0(𝑡)
𝑤10 𝑤11 ⋯ 𝑤1𝑁 ; 𝑓1(𝑡)
⋮ ⋮ ⋱ ⋱ ⋮ ⋮

𝑤𝑁−2,0 𝑤𝑁−2,1 ⋯ 𝑤𝑁−2,𝑁 ; 𝑓𝑁−2(𝑡)

𝑢00 𝑢01 ⋯ 𝑢0𝑁 ; λ0

𝑢10 𝑢11 ⋯ 𝑢1𝑁 ; λ1 ]
 
 
 
 
 

. (28) 

In Eq. (24), if 𝑟𝑎𝑛𝑘𝐖 = 𝑟𝑎𝑛𝑘[𝐖; 𝐅] = 𝑁 + 1 then the coefficient matrix A is uniquely 
determined and so the solution of the problem (1-2) is obtained as in Eq. (29): 

 𝑥𝑁(𝑡) = 𝐁(𝑡)𝐀 or 𝑥𝑁(𝑡) = 𝐓(𝑡)𝛇𝑇𝐀. (29) 

7. Numerical Example 

A spring-mass-damper system with a mass of 𝑀 =  10 kg, damping coefficient of  
𝐶 =  20 𝑘𝑔/𝑠 and spring stiffness of 𝐾 =  4000 𝑁/𝑚 subject to an excitation force of amplitude 
𝐹0 = 100 𝑁 and frequency 𝜔 = 10 𝑟𝑎𝑑/𝑠 rad/s is examined with initial conditions  
𝑥(0) = 0.01, �̇�(0) = 0. Based on these parameters, Eq. (22) can be expressed as 

 10�̈� + 20�̇� + 4000𝑥 = 100 𝑐𝑜𝑠10𝑡.  

The exact solution obtained by the method of undetermined coefficients is as follows  
(Inman, 2001) 

 𝑥(𝑡) = 𝑡𝑎𝑛−1
𝑥0𝜔𝑑

𝑣0 + 𝜉𝜔𝑛𝑥0
, 𝐴 =

1

𝜔𝑑
√(𝑣0 + 𝜉𝜔𝑛𝑥0)

2 + (𝑥0𝜔𝑑)2, 𝑥 = 0 for free response, 

and 

 

𝑥(𝑡) = 𝑡𝑎𝑛−1
𝜔𝑑(𝑥0 − 𝑥𝑐𝑜𝑠𝜃)

𝑣0 + (𝑥0 − 𝑥𝑐𝑜𝑠𝜃)𝜉𝜔𝑛 − 𝜔𝑥𝑠𝑖𝑛𝜃
, 𝐴 =

𝑥0 − 𝑥𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜙
 

𝜃 = 𝑡𝑎𝑛−1
2𝜉𝜔𝑛𝜔

𝜔𝑛
2 − 𝜔2

, 𝑥 =
𝑓0

√(𝜔𝑛
2 − 𝜔2)2 + (2𝜉𝜔𝑛𝜔)2

 
for forced response. 

Firstly, using Eq. (17) the fundamental matrix equations is written as Eq. (30): 

 10𝐓(𝑡)𝐄2𝛇𝑇𝐀 + 20𝐓(𝑡)𝐄𝛇𝑇𝐀 + 4000𝐓(𝑡)𝛇𝑇𝐀 = 100𝑐𝑜𝑠10𝑡 (30) 

First, let us determine both the particular solution and the general solution for the equation 
when 𝑁 = 5. To accomplish this, we need to calculate the necessary matrix equations. For  
𝑁 = 5, the matrix 𝐖 and the augmented matrix [𝐖; 𝐅] are defined as follows: 

 𝐖 =

[
 
 
 
 
 
 
 
 
 
 
 
 4000 −1980

2000

3
−20 −

340

3
−

10

3

4000 −1180
104

3

872

5
−

1972

75
−

6442

75

4000 −380 −
832

3

428

5

6764

75
−

3586

75

4000 420 −
808

3
−

472

5

6576

75

158

3

4000 1220
176

3
−

868

5
−

2548

75

6326

75

4000 2020
2120

3
40 −

340

3
−

10

3 ]
 
 
 
 
 
 
 
 
 
 
 
 

,  
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 [𝐖; 𝐅] =

[
 
 
 
 
 
 
 
 
 
 
 
 4000 −1980

2000

3
−20 −

340

3
−

10

3
; 100

4000 −1180
104

3

872

5
−

1972

75
−

6442

75
; −

4536

109

4000 −380 −
832

3

428

5

6764

75
−

3586

75
; −

8432

129

4000 420 −
808

3
−

472

5

6576

75

158

3
;

5665

59

1 −
1

2

1

6
0 −

1

30
0 ; 0.01

0 1 −1
1

2
0 −

1

6
; 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

  

As indicated in the method, the particular solution is obtained as follows after certain matrix 
operations 

 
𝑥𝑝(𝑡) = 8.4282770393𝑥5 − 20.4809690511𝑥4 + 16.234587123𝑥3

− 4.34431040004𝑥2 + 0.0647716655134𝑥 + 0.0463976936726 
 

Similarly, the general solution is as follows:  

 
𝑥𝑔(𝑡) = −61.2945777462𝑥5 + 79.2335823084𝑥4 − 30.1164823672𝑥3 + 3𝑥2

+ 1.18423789293 × 10−15𝑥 + 0.01 
 

The problem has also been solved for 𝑁 = 50, 𝑁 = 100, and 𝑁 = 200. To demonstrate the 
accuracy of the method, the exact solution has been compared with 𝑥50(𝑡) in Figure 1, with 
𝑥100(𝑡) in Figure 2, and with 𝑥200(𝑡) in Figure 3. The graphs demonstrate the accuracy and 
reliability of the proposed method, as the solutions closely correspond to the expected 
theoretical behavior. 

 
Figure 1. Comparison of the exact method and the approximate numerical method for the 

general solution of the problem for 𝑁 = 50 
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Figure 2. Comparison of the exact method and the approximate numerical method for the 

general solution of the problem for 𝑁 = 100 

 
Figure 3. Comparison of the exact method and the approximate numerical method for the 

general solution of the problem for 𝑁 = 200 
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8. Conclusions 

In this study, Bernoulli polynomials are utilized to develop a novel method for solving the 
periodic motion of an underdamped single-degree-of-freedom spring-mass system subjected 
to harmonic excitation. This method is based on collocation points and matrix equations, 
offering a structured and computationally efficient approach. The problem is solved for 
different values of the system parameters, and the approximate solutions are illustrated 
graphically, demonstrating the method's practical applicability. 

The results obtained through Matlab calculations highlight the accuracy and reliability of the 
proposed method, as the solutions closely align with expected theoretical behavior. Moreover, 
the method's ease of implementation and computational efficiency make it highly 
advantageous. Specifically, Bernoulli polynomials enable a reduction in computational 
complexity and provide high accuracy with fewer collocation points. 

Beyond the specific application addressed in this study, the proposed approach has broader 
potential. It can be extended to solve higher-order systems of differential equations and other 
complex engineering or physical problems that exhibit periodic behavior. For instance, 
systems in vibration analysis, electrical circuit modeling, and wave mechanics could benefit 
from the enhanced computational efficiency and accuracy provided by this method. 

In conclusion, this study underscores the utility of Bernoulli polynomials not only as a 
theoretical tool but also as a practical and efficient method for addressing real-world problems 
in engineering and physics. Their distinct advantages, such as ease of programming, 
computational efficiency, and adaptability to diverse problems, make them a promising 
alternative to traditional numerical methods. Future research could further explore these 
applications, solidifying Bernoulli polynomials as a cornerstone technique in applied 
mathematics and engineering problem-solving. 

Author Statement  

The author is solely responsible for the conceptualization, methodology, data collection, 
analysis, and manuscript preparation. 

Conflict of Interest 

The author declares no conflict of interest. 

References 

Apostol, T. M. (1976). Introduction to Analytic Number Theory. Springer-Verlag, Newyork. 

Bahşi, M., Çevik, M., & Sezer, M. (2018). Jacobi polynomial Solutions of Volterra  
Integro-Differential Equations with Weakly Singular Kernel. New Trends in 
Mathematical Sciences, 6(3), 24-38.  

Baykuş, N., & Sezer, M. (2017). Hybrid Taylor-Lucas Collocation Method for Numerical 
Solution of High-Order Pantograph Type Delay Differential Equations with Variables 
Delays. Applied Mathematics and Information Sciences, 11(6), 1795-1801. 

Biçer, K.E., & Dağ, H.G. (2023). Numerical Solutions of Differential Equations Having Cubic 
Nonlinearity Using Boole Collocation Method. Turkish Journal of Mathematics, 47, 732-
745.  

Çayan, S., Özhan, B.B., & Sezer, M., (2022). Collocation Approaches to The Mathematical 
Model of an Euler–Bernoulli Beam Vibrations. Mathematics and Computers in Simulation, 
197, 32-44. 



 

10 

Erdem Biçer                                                         Scientific Research Communications, 5(1) 2025 

Çevik, M., Bahşi, M.M., & Sezer, M. (2014). Solution of The Delayed Single Degree of Freedom 
System Equation by Exponential Matrix Method. Applied Mathematics and Computation, 
242, 444-453. 

Erdem Biçer, K., & Sezer, M. (2019). A Computational Method for Solving Differential 
Equations with Quadratic Nonlinearity by Using Bernoulli Polynomials. Thermal 
Science, 23(1), 275-283. 

Erdem, K., & Yalçınbaş, S. (2012a). Bernoulli Polynomial Approach to High-Order Linear 
Differential-Difference Equations. AIP Conf. Proc., 1479, 360-364. 

Erdem, K., & Yalçınbaş, S. (2012b). Numerical Approach of Linear Delay Difference Equations 
with Variable Coefficients in Terms of Bernoulli Polynomials. AIP Conf. Proc., 1493, 
338-344. 

Erdem, K., Yalçınbaş, S., & Sezer, M. (2013). A Bernoulli Polynomial Approach with Residual 
Correction for Solving Mixed Linear Fredholm Integro-Differential-Difference 
Equations. Journal of Difference Equations and Applications, 19, 1619-1631. 

Gülsu, M., Yalman, H., & Sezer, M. (2011). A New Hermite Collocation Method for Solving 
Differential Difference Equations. Applications and Applied Mathematics: An International 
Journal (AAM), 6(1), 116-129. 

Inman, D.J. (2001). Engineering Vibration, second ed. Prentice-Hall, New Jersey. 

Kurt, N., & Çevik, M. (2008). Polynomial Solution of The Single Degree of Freedom System by 
Taylor Matrix Method. Mechanics Research Communications, 35(8), 530-536. 

Kürkçü, Ö.K., Aslan, E., & Sezer, M. (2016). A Numerical Approach with Error Estimation to 
Solve General Integro-Differential-Difference Equations Using Dickson Polynomials. 
Applied Mathematics and Computation, 276, 324-339.  

Savaşaneril, N. B. (2018). Laguerre Series Solutions of The Delayed Single Degree of Freedom 
Oscillator Excited by an External Excitation and Controlled by a Control Force. Journal 
of Computational and Theoretical Nanoscience, 15(2), 606-610. 

Savaşaneril, N. B. (2023). Lucas Polynomial Solution of a Single Degree of Freedom System.  
Sci. Res. Comm., 3(1). 

Sezer, M., & Kaynak, M. (1996). Chebyshev Polynomial Solutions of Linear Differential 
Equations. Int. J. Mat. Educ. Sci. Technol, 27(4), 607-618. 

Yıldız, G., & Sezer, M. (2019). Truncated Bell Series Approach to Solve Systems of Generalized 
Delay Differential Equations with Variable Coefficients. Turkish Journal of Mathematics 
and Computer Science, 11, 105-113. 

Yüzbaşı, Ş., Şahin, N., & Sezer, M. (2012). A Collocation Approach to Solving the Model of 
Pollution for a System of Lakes. Mathematical and Computer Modelling, 55(3-4), 330-341. 

Yüzbaşı, Ş., & Karaçayır, M. (2017). An Exponential Galerkin Method for Solutions of HIV 
Infection Model of CD4+ T-Cells. Computational Biology and Chemistry, 67, 205-212. 

Yüzbaşı, Ş., & Yıldırım, G. (2021). A Laguerre Approach for Solving of The Systems of Linear 
Differential Equations and Residual Improvement. Computational Methods for 
Differential Equations, 9(2), 553-576. 

 

 


