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Abstract 

The use of steel structures with varying cross-sectional dimensions along their length is 
common, with nodal braces playing a critical role in enhancing their load-carrying capacity 
and stability. These braces distribute loads within the structure and improve resistance to 
lateral forces. Current design guidelines, such as American Institute of Steel Construction 
(AISC) Design Guide 25 and AISC 360-22, offer a general framework for elements with fixed 
brace conditions and prismatic cross-section. This study aims to be a pioneering investigation 
into the variation of brace force values in short-span and compact web-tapered beams under 
a single loading condition. The article seeks to comprehensively examine the requirements and 
limits of brace force in short-span web-tapered compact beams. To achieve this goal, 
parametric finite element analyses are utilized to explore how brace force changes concerning 
beam geometry and material properties under a single loading condition. The beam used was 
considered as doubly symmetric and divided into 100 nodes and supported by a nodal brace 
at the middle node. The beam is 2540 mm (100 in) long, its depth tapering from 1066.8 mm (42 
in) to 924.6 mm (36.4 in) over its span and unbraced length is 1270 mm (50 in). In terms of finite 
element analysis, the software utilized significantly influences the accuracy and reliability of 
results, particularly in scenarios involving inelastic nonlinear analysis. In this study, the 
ABAQUS software was employed specifically to conduct parametric finite element analyses, 
considering the complexities of inelastic material behavior. Maximum Brace Force value that 
has been found in the simulation studies has been found as 2.15%. Consequently, the findings 
of this research are intended to contribute to the development of a new design method for 
determining the requirements and limits of brace force in short-span, determining required 
brace stiffness and variable cross-sectional dimension compact beams, to contribute to the safe 
and economical design of such beams, and to provide engineers with ideas to consider and 
data to use in their designs. 

Keywords: Web-tapered beam; brace; brace force; compact beam; finite element method 

 

1. Introduction  

In structural engineering, the design and analysis of steel beams are critical for ensuring safety 
and efficiency in construction. Steel structures offer significant advantages over other types of 
structures due to the flexibility of variable cross-section elements and the ability to produce 
welded sections. One such structural member is the web-tapered section steel members. These 
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web-tapered sections can be enhanced by the addition of nodal bracing at the mid-section to 
increase load-bearing capacity and stability. This study focuses on short-span web-tapered 
compact welded I-section beams that are supported by a flexible nodal brace at the midspan 
of its top flange. This study was designed in a limited scope to examine the performance of 
short span beams in the initial phase of the research. It is planned to expand the scope and 
examine other beam types in future studies. 

Miller (2003) highlighted the lack of design equations for web-tapered I-section beams, 
emphasizing the need for further research in this area, particularly in the inelastic range using 
nonlinear finite element analysis. Also, the author mentioned that behavior of web-tapered I-
shaped beams at the ultimate stage may be determined by a number of variables, including 
the flange width, flange thickness, web thickness, unbraced length, tapering angle, etc., 
according to the results of the current parametric research. The author also showed in his study 
that the plate slenderness ratios in the American Institute of Steel Construction (AISC) 360-22 
(2022) Load and Resistance Factor Design (LRFD) Table B4.1 are inadequate for compact beam 
behavior in adequately braced web-tapered I-shaped beams in order to provide accurate 
estimates for the elastic buckling resistance. Soltani et al. (2019) examined the lateral buckling 
of three comprehensive I-beam examples. These included simply supported doubly symmetric 
I-sections and axially varied materials in both homogeneous and inhomogeneous tapered 
beams, utilizing a new finite element approach. Soltani and Asgarian (2020) developed a finite 
element model to assess the lateral-torsional stability of axially functionally graded beams 
featuring tapered bi-symmetric I-sections under a range of boundary conditions. Asgarian et 
al. (2013) developed a theoretical and numerical model based on the power series method for 
beams with arbitrary cross-sections and boundary conditions. Lateral buckling loads were 
determined by solving the eigenvalue problem of the algebraic system derived from this 
model. The study compared these results with finite element solutions obtained through 
established numerical or analytical methods, such as Ansys software, and concluded that the 
proposed method is effective for analyzing the stability of both tapered beams and beams with 
constant cross-sections. Mercuri et al. (2020) highlighted that the use of approximate methods 
becomes necessary due to the complexity of analytical solutions for tapered sections. It is noted 
that commercial software often fails to accurately account for the features of non-prismatic 
beams, resulting in inconsistent structural analyses, erroneous stress distribution estimations, 
and rough predictions of the structural element's strength. In the study, the stiffness matrix 
was analytically defined for both homogeneous prismatic and tapered beams, and the 
resulting finite element outcomes were compared with the results obtained from SAP2000 for 
the same beams. Toğay (2024) examined the inelastic nonlinear buckling analysis with stiffness 
reduction factors used in web-tapered I sections, compared this analysis with finite element 
analysis and found a 98.6% agreement. This study emphasized the consistency of inelastic 
nonlinear buckling analysis especially in fixed-supported web-tapered I sections and the 
usability of inelastic nonlinear buckling analysis in this field.  

Foster and Gardner (2013) used a geometrically and materially non-linear finite element model 
to conduct a series of experiments on simply supported beams with variations in restraint 
spacing and stiffness. Authors found that at the minimum required stiffness, restraint forces 
reached their peak values, but increasing the stiffness beyond this point caused the forces to 
reduce rapidly and ensured that full capacity of the restrained member was reached. Tankova 
et al. (2018) tested two full-scale numerical models including all relevant parameters such as 
geometric and material defects under varying bending moments with experiments on web-
tapered steel elements, and summarized the results obtained from each experiment and 
formed the basis for further studies. 
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Wang & Nethercot (1990) performed a parametric study addressing bracing requirements for 
unrestrained beams. For single-bracing systems, authors recommend 1% of axial force in a 
flange at failure as the bracing-strength requirement. For multiple-bracing systems, a total 
value of 2% is suggested, with a maximum of 1% for each brace, especially for beams with 
high slenderness. Lay and Galambos (1966) and Mohammadi et al. (2016) both addressed the 
design and bracing requirements for steel beams. Lay and Galambos (1966) emphasized the 
importance of axial strength, axial stiffness, and bending strength in the design of bracing for 
inelastic steel beams. Mohammadi et al. (2016) studied the brace stiffness requirement 
additional to the elastic lateral torsional buckling of monosymmetric I-beams under pure 
bending condition. Both studies provide valuable insights into the factors that need to be 
considered in the design and bracing of steel beams. Bishop (2013) created a method for 
calculating inelastic eigenvalue buckling to identify the optimal bracing stiffness needed in 
general frame systems for metal buildings. He also offered guidelines for the necessary design 
stiffness and strength of brace components using this calculation tool. 

AISC Design Guide 25 (2022) provides comprehensive information on the adequacy of fixed 
bracing for elements, detailing the critical points to consider in inelastic nonlinear analyses. 
The guide elaborates on the fixed bracing requirements and calculation methods for 
symmetrical linearly tapered elements through various examples, and it offers safe 
calculations for braced points at different unbraced lengths. AISC Design Guide 25 also 
recommends using computer-aided analysis methods to determine the accuracy and 
effectiveness of bracing systems. Wijaya et al. (2019) found that AISC Design Guide 25 
calculates the critical moment accurately for long beams but not accurately for short beams. 

The application of flexible nodal bracing is a common technique to enhance the stability of 
beams in their transverse direction. The AISC 360-22 (2022) Specification provides simplified 
design equations for various bracing situations, including “relative” and “nodal” lateral 
bracing of columns and beams, and “nodal” and “continuous” torsional bracing of beams. 
According to the AISC guidelines, the brace force demand should typically be within a certain 
percentage to ensure adequate performance. The inelastic finite element nonlinear analysis 
used in this study, in light of the operations performed with the finite element method in finite 
element program, revealed that the brace force demand can increase up to 2.15% instead of 
the 2% for compact members typically predicted by the AISC. This observed increase should 
be taken into account in terms of brace stability. 

To achieve this result, the compactness of the beam sections was first determined by 
performing compactness equations mentioned at AISC Appendix 6 Table B4.1b. These 
calculations allow the identification of the thickness range necessary for the beam to be 
considered compact. Subsequently, parametric finite element analysis was then used using the 
selected compact range for flange thickness and web thickness. Considering the complexity of 
inelastic and nonlinear material behavior, ABAQUS software (Dassault Systèmes / Simulia, 
2020) was employed for the finite element analyses. Load proportion factor and node 
displacement values were obtained from the analyses according to various stiffness values. 
These parameters were then used to calculate the percentage brace force demand. 

The findings of this study may have important implications for the design of mentioned web 
tapered steel beams; a method may be provided to increase brace force demand to 2.5 %. This 
article aims to detail the methodology, analysis, and results, providing insights into the 
practical applications of flexible brace in beam design. 
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2. Methodology  

In this study, a short span welded web-tapered steel beam with a total length of 2540 mm 
(100in) was used. The 3-d view of beam used is given in Figure 1(a). The material used was 
ASTM A992 Grade 50 or a similar high-strength structural steel grade. For this steel grade, the 
modulus of elasticity (E) was taken as 200,000 MPa (29,000 ksi), the yield strength (𝐹𝑦) as 379.21 

MPa (55 ksi), and the tensile strength (𝐹𝑢) as 547 MPa (79.31 ksi). A flexible nodal brace with 
variable stiffness was placed at the midpoint of the beam's top flange, dividing the length of 
the beam in half as shown in Figure 1(b). The height of the beam between top and bottom 
flanges varies uniformly tapered from 1066.8 mm (42 in) at one end to 924.6 mm (36.4in) at the 
other end as shown in Figure 1(b). At the point where the brace is located, the web height is 
996 mm (39.205 in), and the unbraced length was set to 1270 mm (50in). The flange width is 
228.6 mm (9 in).  

 

 

Figure 1. Finite element model of web tapered beam (a) 3-d view and (b) X-Y axis view  

 

The inelastic nonlinear analysis of the beam under an applied moment at the left end was 
performed as shown in Figure 2(a). The loading condition is described by a moment diagram 
that forms a right-angled triangle, with the maximum moment at the left end, decreasing 
towards the right, as shown in Figure 2(b). The inelastic nonlinear analysis of the beam 
performed within the compact web thickness and flange thickness ranges. First, the compact 
range for web and flange thickness were calculated according to AISC 360-22 Table B4.1b 
“Width-to-thickness ratios: Compression elements members subject to flexure”. The flange 
used in this study corresponds to Case 11 of Table B4.1b “flanges of doubly and singly 
symmetric I-shaped built-up sections” in the table, and the web section corresponds to Case 
15 of Table B4.1b “webs of doubly-symmetric I-shaped sections and channels”.  
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Figure 2. (a) Applied moment illustration, (b) Moment diagram of the beam and (c) Best-Fit 
Prawel Pattern residual stress (Adapted from Jeong et al. 2016) 

 

For flanges of doubly and singly symmetric I-shaped built-up sections: 

𝑏

𝑡
≤ 0.38√

𝐸

𝐹𝑦
=  λ 𝑃                                                               (1) 

𝑏

𝑡
≤ 0.95√

𝑘𝑐𝐸

𝐹𝐿
=  λ r                                                             (2) 

In the formulas (1) and (2), b corresponds to half of the width of the flange, and t is the 
thickness of the flange. E means the modulus of elasticity of steel, which is 200,000 MPa (29,000 
ksi). 𝐹𝑦 means the specified minimum yield stress, which is 379.21 MPa (55 ksi). As given in 

AISC 360-22 Table B4.1b 𝑘𝑐 =
4

√ℎ/𝑡𝑤
 but shall not be taken less than 0.35 nor greater than 0.76 

for calculation purposes, h is the distance between flanges. Similarly, as mentioned in same 
table, 𝐹𝐿 = 0.7𝐹𝑦 for major axis bending of compact and noncompact web built-up I-shaped 

members with 𝑆𝑥𝑡/𝑆𝑥𝑐 ≥ 0.7. 

For webs of doubly-symmetric I-shaped sections and channels: 

ℎ

𝑡𝑤
≤ 3.76√

𝐸

𝐹𝑦
=  λ 𝑃                                                              (3) 

ℎ

𝑡𝑤
≤ 0.38√

𝐸

𝐹𝑦
=  λ 𝑟                                                              (4) 

In the formulas (3) and (4), h corresponds to the distance between flanges, and 𝑡𝑤  is the 
thickness of the web section. Again, E means the modulus of elasticity of steel, which is 200,000 
MPa (29,000 ksi) and 𝐹𝑦 means the specified minimum yield stress, which is 379.21 MPa (55 

ksi). 

The findings were tabulated in Table 1. Web thicknesses greater than 11.43 mm (0.45 in) and 
flange thicknesses greater than 13.97 mm (0.55 in) were found to be compact. To obtain results, 
flange thicknesses between 13.97 mm (0.55 in) and 25.4 mm (1 in) and web thickness ranges 
between 11.43 mm (0.45 in) and 19.05 mm (0.75 in) were selected within the compact range. 
Subsequently, for each thickness within this range, inelastic nonlinear analysis was performed 
using the finite element method by the ABAQUS software (Dassault Systèmes / Simulia, 2020). 
Since the number of cases is high, Python code written to automate the results and speed up 
the processes was utilized.  

Finite element models of tapered beam cross-sections, with the top flange height tapering from 
one end to the other, were developed using ABAQUS. The test elements were modeled using 
a four-node shell element (S4R) for all section components. For all scenarios, the deeper side 
of the web was exposed to a bending moment. Using Type 1 spring elements in ABAQUS, a 
single brace was applied at the midspan of the tapered beam, at the top flange height, and 
connected to the flange-web intersection. The brace stiffness was gradually increased from 0.25 
kip/in to 1500 kip/in to reflect the minimum and maximum capacities achievable with a fixed 
brace. In the study conducted by Lokhande (2014) using Advanced Finite Element Analysis 
for the strength evaluation of doubly symmetric I-section beams and column-beams, four-
node S4R shell elements were used to model the flanges and web of the element while using 
ABAQUS software. 
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The shell finite element analysis models integrated residual stresses by employing an existing 
residual stress pattern (Pattern I). Best-fit Prawel pattern that shown in Figure 2(c) applied in 
this research. This pattern, valued for its self-equilibrating properties within each component, 
has been previously utilized by Jeong et al. (2016) for welded cross section. 

These imperfection patterns are generated using the geometric imperfection tolerances 
specified in AWS (2010) and AISC Code of Standard Practice (COSP) (2022). To obtain flange 
tilt and web out-of-flatness patterns, inelastic eigenvalue buckling analysis is conducted on 
members with out-of-plane displacements restrained at the top and bottom flange-web 
juncture points, under uniform axial compression as shown in Figure 3(a). This analysis yields 
buckling modes, which are then used to isolate and scale the flange tilt and web out-of-flatness 
patterns to half the tolerance values as has been previously utilized and mentioned by Toğay 
et al. (2018). Besides the previously discussed imperfections, a flange sweep is introduced at 
the web-flange juncture points in the Critical Segment (CS). A sinusoidal flange sweep is 
applied specifically to the top flange, which experiences flexural compression. Conversely, the 
bottom flange, which is under flexural tension, remains without any sweep, as illustrated in 
Figure 3(b).  

 

 

Figure 3. (a) Web out-of-flatness and flange tilt imperfections, and (b) applied imperfections 
(the AWS/AISC COSP Flange Sweep Tolerance). (Adapted from Toğay and White, 2018) 

 

As a result of these analyses, nodal displacement and load proportionality factor were 
obtained for a series of stiffness values ranging from 350.25 kN/m (2 kip/in) to 262,690.2 
kN/m (1500 kip/in). With these results, compression force at midsection of top flange and 
brace force were calculated. Then, the brace force was divided by the compression force at 
midsection of top flange to obtain a percentage value called “brace force demand” for each 
thickness combination. 

Following these calculations, the required brace stiffness was determined according to the 
procedures outlined in both the AISC 360-22 specification and its commentary. Specifically, it 
was calculated using the formulas given below under Appendix 6 “Stability Bracing for 
Beams” Nodal Bracing heading and Commentary Appendix 6 “Stability Bracing for Beams” 
Lateral bracing heading 

Nodal Bracing according to Specification Appendix 6 is; 

𝛽 =  
10 × 𝑀𝑟× 𝐶𝑑

𝐿𝑏𝑟× ℎ𝑜× 𝛷
                                                                     (5) 
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𝑃𝑟𝑏 =  
0.02 × 𝑀𝑟 × 𝐶𝑑

ℎ𝑜
                                                                  (6) 

 

 

Figure 4. Required flexural strength 𝑀𝑟  representation for calculation from moment diagram 

 

𝑀𝑟 =
𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 ×  ℎ1 ×  (𝐿𝑃𝐹)𝑚𝑎𝑥

2
                                                        (7) 

Lateral bracing according to Commentary Appendix 6 is; 

𝛽 =  
2 ×  𝑁𝑖  ×  𝐶𝑡  × 𝑃𝑓  × 𝐶𝑑   

𝐿𝑏𝑟  ×  𝛷
                                                          (8) 

𝑃𝑓 =  
𝑀𝑟

ℎ𝑜
                                                                      (9) 

In the formulas (5), (6), (7), (8), and (9), 𝑀𝑟  is required flexural strength using LRFD load 
combinations at brace point and found from moment diagram shown as Figure 4. 𝐶𝑑   is 1 for 
single curvature bending case, 𝐶𝑡 constant is 1 for centroidal loading case. ℎ𝑜 is section height 
distance between flange centroids in brace point, ℎ1is height distance between flange centroids 
of left side of the beam, and 𝐿𝑏𝑟 is unbraced length and all shown in Figure 5. Φ taken as 1 for 
performing nominal analysis, 𝑃𝑓  is beam compressive flange force, 𝑃𝑟𝑏 required strength, 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑  is applied load and (𝐿𝑃𝐹)𝑚𝑎𝑥 is maximum load proportionality factor found from 

inelastic nonlinear analysis. For nodal bracing 𝑁𝑖  is =  4 −
2

𝑛
 and n is number of braces. 

Dimensions are illustrated in Figure 5(a) for the side view of the beam and in Figure 5(b) for 
the front view. 

 

 

Figure 5. Bracing placement (a) and dimension illustration (b) of section 

3. Results 

In this section, selected compact thickness ranges are presented for the inelastic nonlinear 
analysis, which were determined based on the formulas provided in the previous section. The 
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dimension for flange thickness were chosen to be between 13.97 mm (0.55 in) and 25.4 mm (1 
in) as they fall within the compact range. Similarly, the dimension for web thickness were 
chosen to be between 11.43 mm (0.45 in) and 19.05 mm (0.75 in). The cases studied in the 
analysis are shown in Table 1. 

 

Table 1. Compact web and flange thickness range 

Web thickness 
(mm) 

11.43 12.7 13.97 15.24 16.51 17.78 19.05    

Flange thickness 
(mm) 

13.97 15.24 16.51 17.78 19.05 20.32 21.59 22.86 24.13 25.4 

 

The inelastic nonlinear analysis was performed for each of these thickness combinations using 
the finite element method with the ABAQUS software. For each flange thickness-web 
thickness combination, 21 different stiffness values were analyzed individually. The brace 
force and the compression force at the midsection of the top flange were obtained in all 
thickness combinations. The required brace force demand was calculated as the ratio of these 
two forces as mentioned in previous section for all cases. A total of 1470 analyses were 
conducted, and the results for the required brace force demand for each combination are 
shown in Table 2. 

 

Table 2. Required brace force percentage demand for sections 

% 
Flange Thickness (mm) 

13.97 15.24 16.51 17.78 19.05 20.32 21.59 22.86 24.13 25.4 

W
eb

 T
h

ic
k

n
es

s 
(m

m
) 11.43 2.15 2.03 1.98 1.92 1.26 1.85 1.25 1.77 1.74 1.73 

12.7 2.02 1.88 1.83 1.7 1.76 1.75 1.73 1.45 1.31 1.69 

13.97 1.84 1.79 1.73 1.66 1.68 1.73 1.75 1.68 1.77 1.73 

15.24 1.84 1.68 1.69 1.68 1.73 1.65 1.73 1.69 1.77 1.77 

16.51 1.73 1.73 1.79 1.76 1.62 1.64 1.8 1.73 1.67 1.82 

17.78 1.83 1.79 1.75 2.12 1.66 1.8 1.69 1.81 1.75 1.86 

19.05 1.95 1.89 1.52 1.81 1.7 1.57 1.61 1.82 1.77 1.71 

 

To demonstrate, for a specific case with a flange thickness of 25 mm (1 in) and a web thickness 
of 20 mm (0.75 in), the required brace force demand and brace stiffness values are presented 
below in Figure 6. The brace stiffness value for Equation (8) is 668 kN/m (41.04 kip/in) and 
Equation (5) 1670 kN/m (103 kip/in), brace force demand for this case was found as 1.5% and 
1.57% respectively. 

To illustrate the results for all cases a graph was derived. These graphs represent the results 
from the ABAQUS analyses conducted for 21 different stiffness values. Same analyses were 
performed for each case, and the resulting graphs for a specific case shown below. The 
generated graph demonstrates the relationship between brace stiffness values and the 
corresponding brace force demand percentage for cases. 
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Figure 6. Graph of brace force demand values with respect to stiffness values for example 
case 

 

As a result of 1470 analyses, brace stiffness values were found for each thickness combination 
based on the formulas given in previous section. Each of the values shown in Table 3 are the 
required brace force demand in percentage with respect to beam section brace stiffness values 
found as a result of the formulas in the AISC commentary mentioned in the methodology.  

 

Table 3. Required brace force percentage demand with respect to brace stiffness values 
found from Equation (8) 

% 
Flange Thickness (mm) 

13.97 15.24 16.51 17.78 19.05 20.32 21.59 22.86 24.13 25.4 

W
eb

 T
h

ic
k

n
es

s 
(m

m
) 

11.43 1.98 1.81 1.75 1.69 1.14 1.47 1.1 1.39 1.33 1.34 

12.7 1.87 1.7 1.64 1.56 1.56 1.41 1.34 1.33 1.04 1.34 

13.97 1.74 1.67 1.55 1.56 1.46 1.41 1.41 1.32 1.32 1.3 

15.24 1.7 1.56 1.61 1.55 1.5 1.45 1.41 1.38 1.38 1.34 

16.51 1.65 1.61 1.7 1.61 1.6 1.53 1.53 1.42 1.41 1.41 

17.78 1.75 1.73 1.67 1.55 1.61 1.6 1.56 1.48 1.5 1.47 

19.05 1.88 1.83 1.52 1.79 1.63 1.59 1.54 1.5 1.4 1.5 

 

Correspondingly, the values shown in Table 4 are the required brace force demand in 
percentage with respect to beam section brace stiffness values found as a result of the formulas 
in AISC specification Appendix 6 mentioned in the methodology. 
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Table 4. Required brace force percentage demand with respect to brace stiffness values 
found from Equation (5) 

% 
Flange Thickness (mm) 

13.97 15.24 16.51 17.78 19.05 20.32 21.59 22.86 24.13 25.4 

W
eb

 T
h

ic
k

n
es

s 
(m

m
) 

11.43 2.12 2 1.99 1.8 1.21 1.64 1.19 1.52 1.41 1.48 

12.7 2 1.88 1.84 1.66 1.6 1.58 1.44 1.41 1.17 1.44 

13.97 1.81 1.8 1.75 1.67 1.58 1.56 1.57 1.42 1.41 1.38 

15.24 1.81 1.64 1.69 1.67 1.62 1.57 1.55 1.43 1.42 1.44 

16.51 1.7 1.72 1.75 1.71 1.61 1.6 1.6 1.58 1.46 1.44 

17.78 1.8 1.79 1.73 1.73 1.64 1.7 1.6 1.56 1.54 1.57 

19.05 1.95 1.84 1.47 1.8 1.69 1.57 1.55 1.56 1.48 1.57 

 

In order to interpret the conducted studies, the brace force demand values obtained from the 
analysis results initially and presented in Table 2 were compared with the brace force demand 
values found from brace stiffness values calculated subsequently as mentioned above and 
shown in Table 3 and Table 4, with the comparison results shown in Table 5. The purpose of 
this comparison was to observe whether the demands found based on the brace stiffness could 
meet the values obtained from the section analysis. As a result of this comparison, if the value 
obtained from the analysis results was greater than the value found based on the brace 
stiffness, it was shown in the table as red; otherwise, it was shown as light green. In the table, 
each cell with the intersection of flange thickness-web thickness is divided by 2. While the left 
part of the divided cells shows the result of comparing Table 2 and Table 3, the right part 
shows the result of comparing Table 2 and Table 4. 

 

Table 5. Evaluation of Table 2 data in comparison with Table 3 and Table 4 values  

T
ab

le
 3

 

T
ab

le
 4

 

Flange Thickness (mm) 

13.97 15.24 16.51 17.78 19.05 20.32 21.59 22.86 24.13 25.4 

W
eb

 T
h

ic
k

n
es

s 
(m

m
) 11.43                     

12.7                     

13.97                     

15.24                     

16.51                     

17.78                     

19.05                     

Note: Flange thicknesses are divided into two, the box on the left is colored according to the comparison of Table 2 with Table 
3, and the box on the right side is colored according to the comparison of Table 2 with Table 4. 

 

Based on Table 5 findings, it is observed that as compactness increases in the web elements, 
the values for maximum brace force percentage demand in Table 2 appear sufficient. 
Conversely, as compactness decreases for web members, it is found that the brace force 
percentage demand values corresponding to brace stiffness in Tables 3 and 4 exceed those in 
Table 2. 
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Furthermore, while increasing flange thickness does not show a discernible effect, increasing 
web thickness appears to render the maximum brace force percentage demand values in Table 
2 sufficient. These findings illustrate the sensitivity of brace force demands to compactness 
and the geometric characteristics of structural elements as analyzed in the study. 

4. Conclusions 

This study has conducted a comprehensive inelastic nonlinear analysis to investigate the brace 
force demands for various combinations of flange and web thicknesses using the finite element 
method with ABAQUS software. The findings of this research highlight several key insights 
into the relationship between brace stiffness values and the corresponding brace force 
demands.  

The analyses revealed that the compactness of web elements significantly impacts the 
maximum brace force percentage demand. Specifically, as the compactness of web elements 
increases, the brace force demands derived from the analysis are found to be adequate. 
Conversely, for less compact web elements, the brace force demands based on the calculated 
brace stiffness values exceed those obtained from the section analysis. 

Additionally, while variations in flange thickness did not demonstrate a significant effect on 
the brace force demands, an increase in web thickness contributed to achieving sufficient brace 
force percentage demands. This indicated a notable sensitivity of brace force demands to the 
compactness and geometric characteristics of the structural elements under consideration. 

The results suggest that, for optimal design, attention must be given to the compactness of 
web elements to ensure that the brace force demands can be met effectively. 

Overall, this study contributes to a deeper understanding of the factors influencing brace force 
demands and provides valuable insights for the design and assessment of structural elements 
subjected to inelastic nonlinear behavior. Future research could expand on these findings by 
exploring additional geometric configurations and material properties to further refine the 
predictive models for brace force demands in structural engineering applications. 

Author Statement  

The authors confirm contribution to the paper as follows: F. Kömürcü: analysis and 
interpretation of results, data collection, draft manuscript preparation;  O. Toğay: analysis and 
interpretation of results, draft revision. All authors reviewed the results and approved the final 
version of the manuscript. 

Conflict of Interest 

The authors declare no conflict of interest. 

 

References 

AISC (2016). Specification for Structural Steel Buildings, ANSI/AISC 360-22, American Institute 
of Steel Construction, Chicago, IL.  

AISC (2022). Specification for Structural Steel Buildings, ANSI/AISC 360-22, American Institute 
of Steel Construction, Chicago, IL. 



 

84 

Kömürcü and Toğay  Scientific Research Communications, vol. 4(2), 2024 

AISC (2022). ANSI/AISC 303-22: COSP-Code of standard practice for steel buildings and bridges, 
American Institute of Steel Construction. 

AWS (2010). Structural Welding Code–Steel, AWS D1.1: D1.1M, (22nd ed.), prepared by AWS 
Committee on Structural Welding. 

Asgarian, B., Soltani, M., & Mohri, F. (2013). Lateral-torsional buckling of tapered thin-walled 
beams with arbitrary cross-sections. Thin-Walled Structures, 62, 96-108. 
https://doi.org/10.1016/j.tws.2012.06.007 

Bishop, C. D. (2013). Flange bracing requirements for metal building systems (Doctoral dissertation, 
Georgia Institute of Technology). Georgia Institute of Technology.  

Dassault Systèmes / Simulia. (2020). ABAQUS/Standard user’s manual version 6.20. Hibbit, 
Karlsson & Sorensen Inc. 

Foster, A. S. J., & Gardner, L. (2013). Ultimate behaviour of steel beams with discrete lateral 
restraints. Thin-Walled Structures, 72, 88-101. 
https://doi.org/10.1016/j.tws.2013.06.009 

Jeong, W. Y., Toğay, O., Lokhande, A. M., & White, D. W. (2016). An introspective assessment 
of buckling and second-order load-deflection analysis based design calculations. In 
Proceedings of the Annual Stability Conference. Structural Stability Research Council. 
Orlando, FL. 

Lay, M. G., & Galambos, T. V. (1966). Bracing requirements for inelastic steel beams. Journal of 
the Structural Division, 92(2), 53-68. https://doi.org/10.1061/JSDEAG.0001421 

Lokhande, A. M. (2014). Evaluation of steel I-section beam and beam-column bracing requirements 
by test simulation (Master's thesis, Georgia Institute of Technology). Georgia Institute of 
Technology. 

Mercuri, V., Balduzzi, G., Asprone, D., & Auricchio, F. (2020). Structural analysis of non-
prismatic beams: Critical issues, accurate stress recovery, and analytical definition of 
the Finite Element (FE) stiffness matrix. Engineering Structures, 213, 110252. 
https://doi.org/10.1016/j.engstruct.2020.110252 

Miller, B. S. (2003). Behavior of web-tapered built-up I-shaped beams (Master's thesis). University 
of Pittsburgh. 

Mohammadi, E., Hosseini, S. S., & Rohanimanesh, M. S. (2016). Elastic lateral-torsional 
buckling strength and torsional bracing stiffness requirement for monosymmetric I-
beams. Thin-Walled Structures, 104, 116-125. https://doi.org/10.1016/j.tws.2016.03.009 

Soltani, M., Asgarian, B., & Mohri, F. (2019). Improved finite element model for lateral stability 
analysis of axially functionally graded nonprismatic I-beams. International Journal of 
Structural Stability and Dynamics, 19(09). https://doi.org/10.1142/S0219455419501086  

Soltani, M., & Asgarian, B. (2020). Exact stiffness matrices for lateral–torsional buckling of 
doubly symmetric tapered beams with axially varying material properties. Iranian 
Journal of Science and Technology, Transactions of Civil Engineering. 
https://doi.org/10.1007/s40996-020-00402-z  

Tankova, T., Martins, J. P., Simões da Silva, L., & Marques, L. (2018). Experimental lateral-
torsional buckling behaviour of web tapered I-section steel beams. Engineering 
Structures, 168(4), 168-184. https://doi.org/10.1016/j.engstruct.2018.04.084 

https://doi.org/10.1061/JSDEAG.0001421
https://doi.org/10.1007/s40996-020-00402-z


 

85 

Kömürcü and Toğay  Scientific Research Communications, vol. 4(2), 2024 

Toğay, O. (2018). Advanced Design Evaluation Of Planar Steel Frames Composed Of General 
Nonprismatic I-Section Members. Doctoral Dissertation, School of Civil and 
Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 273pp. 

Toğay, O. (2024). Application of inelastic nonlinear buckling analysis with stiffness reduction 
factors to web tapered I sections. Scientific Research Communications, 4(1). 
https://doi.org/10.52460/src.2024.003 

Toğay, O., & White, D. W. (2018, April 10-13). Toward the recognition of unaccounted for 
flange local buckling and tension flange yielding resistances in the ANSI/AISC 360 
specification. In Proceedings of the Annual Stability Conference Structural Stability 
Research Council. Baltimore, Maryland. 

Wang, Y. C., & Nethercot, D. A. (1990). Bracing requirements for laterally unrestrained beams. 
Journal of Constructional Steel Research, 17(4), 305-315. https://doi.org/10.1016/0143-
974X(90)90078-U 

White, D. W., Jeong, W. Y., & Slein, R. (2021). AISC Design Guide 25: Frame design using 
nonprismatic members. American Institute of Steel Construction. 

Wijaya, P. K., Swan, C. L., & Noor, G. S. (2019). An analysis of elastic and inelastic lateral 
torsional buckling of web-tapered I beams using the finite element method. MATEC 
Web of Conferences. 


	1. Introduction
	2. Methodology
	3. Results
	4. Conclusions
	Author Statement
	Conflict of Interest
	References

